Смекни!
smekni.com

Расчет параметров асинхронного энергосберегающего электродвигателя (стр. 15 из 15)

60% полученной прибыли направим в фонд накопления, предназначенный для создания нового имущества, приобретения основных и оборотных средств. Средства из этого фонда могут в частности быть потрачены на приобретение более совершенной компьютерной техники.

35% полученной прибыли направим в резервный фонд предприятия, предназначенный на случай прекращения его деятельности для покрытия кредиторской задолженности.

5% прибыли направляются в фонд потребления. Средства из этого фонда будут направлены на материальное поощрение персонала фирмы.

4.8 Расчет экономического эффекта

Экономический эффект можно рассчитать по формуле:

,(4.2)

где К – количество клиентов, З – затраты на один клиент.

Затраты на один клиент рассчитываются по формуле:

,(4.3)

где

– затраты на аппаратную часть,
– затраты на программную часть. Минимальная стоимость аппаратной части клиента
= 10 000р. Минимальная стоимость программной части клиента
= 100 000р. Таким образом, затраты на один клиент составляют З = 110 000р. Среднее количество клиентов на проект К = 100. Итого, экономический эффект данного программного продукта для одного проекта E = 10 890 000р.

Годовой экономический эффект:

,(4.4)

где N – количество проектов в год, E – экономический эффект на один проект. Количество проектов в год N = 2.

Годовой экономический эффект

= 21 780 000руб.

ЗАКЛЮЧЕНИЕ

В результате работы была создана компьютерная программа «Электродвигатель», позволяющая осуществлять расчет и исследование параметров энергосберегающего асинхронного двигателя с индивидуальными номинальными данными.

В процессе работы были изучены

· Методология проектирования и расчета параметров асинхронного двигателя

· Язык PL/SQL СУБД Oracle 8i

· Основы работы с объектами интерфейса ADO

Построенный с помощью программы алгоритм и проведенные вычисления показали, что разработанных инструментальных средств достаточно для описания алгоритмов расчета асинхронных энергосберегающих электродвигателей.


СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

1. Я.С. Гурин, Б.И. Кузнецов. Проектирование серий электрических машин. – М.: Энергия, 1978. – 480с., ил.

2. Кононенко В.В., Мишкович В.И.; под ред. В.В. Кононенко. Электротехника и электроника: Учебное пособие для вузов. – Ростов н/Д: Феникс, 2004. – 752 с.

3. К.В. Лотоцкий. Электрические машины и основы электропривода. – М: Колос, 1964. – 495 с.

4. С.Д. Кузнецов. Основы современных баз данных // Информационно-аналитические материалы центра информационных технологий. http://www.citforum.ru

5. Мэтьюз, Джон, Г., Финк, Куртис, Д. Численные методы. Использование MATLAB, 3-е издание. : Пер. с англ. – М. : Издательский дом «Вильямс», 2001. – 720 с. : ил. – Парал. тит. англ.

6. Григорьев Ю.Г., Григорьев О.А. Персональный компьютер: физические факторы воздействия и здоровье пользователя. Энергия: экономика, техника, экология: Науч.-теоретич. и крит.-публицист. ил. журн. – М.: Наука, 1999, № 7 – С. 33–37, № 8 – С. 30–34.


Приложение А

Сравнение результатов расчета

Таблица А.1 – Результаты расчета параметров электродвигателя

Индекс

Параметр

Значение, вычисленное в программе

Значение, приведенное в примере

Отклонение в процентах

1001

Коэффициент заполнения сталью сердечника статора

0,97

0,97

0,00%

1002

Коэффициент заполнения сталью сердечника ротора

0,97

0,97

0,00%

1101

Число пазов у статора

36

36

0,00%

1102

Число пазов у ротора

28

28

0,00%

1201

Припуски по ширине паза, мм

0,1

0,1

0,00%

1202

Припуски по высоте паза, мм

0,1

0,1

0,00%

1300

Коэффициент полезного действия

0,84

0,84

0,00%

1400

Коэффициент мощности cos(f)

0,855

0,855

0,00%

1500

Подводимая мощность, В*А

5569,479492

5560

0,17%

1600

Наружный диаметр сердечника статора, мм

175

175

0,00%

1700

Мощность на 1мм длины сердечника, В*А/мм

48

47

2,08%

1800

Длина сердечника статора, мм

115

118

2,61%

2200

Внутренний диаметр сердечника статора, мм

112

112

0,00%

2201

Отношение D1/Dн1

0,643

0,64

0,47%

2300

Воздушный зазор между статором и ротором, мм

0,3

0,3

0,00%

2400

Наружный диаметр сердечника ротора, мм

111,339996

111,4

0,05%

2500

Отношение D2/Dн1

0,23

0,23

0,00%

2600

Внутренний диаметр листов ротора, мм

40

40

0,00%

2900

Тип обмотки статора

Однослойная всыпная концентрическая

Однослойная всыпная концентрическая

––––

3100

Число пазов на полюс и фазу

3

3

0,00%

3200

Шаг обмотки по пазам

9

9

0,00%

3300

Укорочение шага

1

1

0,00%

3400

Коэффициент распределения

0,959795

0,96

0,02%

3600

Обмоточный коэффициент статора

0,959795

0,96

0,02%

3800

Предварительное значение магнитного потока в возушном зазоре, Вб

0,005735

0,00588

2,53%

3900

Коэффициент падения напряжения в обмотке статора

0,966

0,967

0,10%

4000

Предварительное число витков в обмотке фазы

174,000458

169,5

2,59%

4100

Предварительное число эффективных проводников в пазу

28,500076

28,3

0,70%

4300

Принятое число эффективных проводников в пазу

29

28

3,45%

4400

Уточненное число витков обмотки фазы

174

168

3,45%

4500

Эффективное число витков обмотки фазы статора

167,004333

161,1

3,54%

4600

Уточненная расчетная длина сердечника статора, мм

116,983055

121

3,43%

4700

Принятая длина сердечника статора, мм

116

120

3,45%

5200

Конструктивная длина сердечника статора, мм

116

120

3,45%

5600

Конструктивная длина сердечника ротора, мм

116

120

3,45%

5700

Уточненное значение магнитного потока в воздушном зазоре, Вб

0,005732

0,00593

3,45%

5800

Уточненное значение магнитной индукции в воздушном зазоре, Т

0,882415

0,883

0,07%

6200

Эффективная длина сердечника статора, мм

112,520004

116,4

3,45%

6300

Предварительное значение магнитной индукции в спинке статора, Т

1,575

1,55

1,59%

6400

Расчетная высота спинки статора, мм

16,17256

16,4

1,41%

6500

Высота паза статора, мм

15,32744

15,1

1,48%

6600

Зубцовое деление по внутреннему диаметру статора, мм

9,773845

9,77

0,04%

6700

Предварительное значение магнитной индукции в расчетном сечении зубца, Т

1,79

1,75

2,23%

6800

Ширина зубца с равновеликим сечением, мм

4,965736

5,08

2,30%

6900

Большая ширина паза, мм

7,283251

7,3

0,23%

7000

Ширина шлица паза, мм

3,5

3,5

0,00%

7100

Высота шлица паза, мм

0,5

0,5

0,00%

7200

Меньшая ширина паза, мм

5,047908

4,9

2,93%

7400

Площадь поперечного сечения паза в свету, мм2

85,185471

82,8

2,80%

7500

Площадь поперечного сечения корпусной изоляции, мм2

10,89651

10,6

2,72%

7600

Односторонняя толщина корпусной изоляции, мм

0,25

0,25

0,00%

7700

Площадь поперечного сечения паза, занимаемая обмоткой, мм2

70,288963

68,2

2,97%

7701

Площадь поперечного сечения прокладок между катушками в пазу, на дне паза и под клином, мм2

4

4

0,00%

7800

Максимально допустимый диаметр изолированного проводника, мм

1,376737

1,351

1,87%

8200

Площадь поперечного сечения голого провода, мм2

1,237

1,227

0,81%

10600

Среднее зубцовое деление статора, мм

11,111416

11,1

0,10%

10700

Средняя ширина катушки обмотки статора, мм

100,002747

99,9

0,10%

10800

Средняя длина лобовой части обмотки, мм

159

159

0,00%

10900

Средняя длина витка обмотки, мм

550

558

1,45%

11100

Форма пазов ротора

Овальный полузакрытый

Овальный полузакрытый

––––

11200

Зубцовое деление по наружному диаметру ротора, мм

12,492319

12,5

0,06%

11300

Высота шлица, мм

0,5

0,5

0,00%

11400

Ширина шлица, мм

1

1

0,00%

11600

Больший радиус, мм

2,4905

2,4

3,63%

11700

Высота паза ротора, мм

18

18

0,00%

11800

Расчетная высота спинки ротора, мм

23,137499

23,56

1,83%

11900

Эффективная длина пакета ротора, мм

112,520004

116,4

3,45%

12000

Магнитная индукция в спинке ротора, Т

1,050617

1,08

2,80%

12200

Меньший радиус, мм

1,01675

1

1,65%

12300

Расстояние между центрами радиусов, мм

14,129244

14,1

0,21%

12400

Площадь поперечного сечения стержня, мм2

60,835938

58,56

3,74%

14000

Предварительное поперечное сечение кольца литой клетки, мм2

145,348053

143,5

1,27%

14100

Высота кольца, мм

23

23

0,00%

14200

Длина кольца, мм

6,333922

6,5

2,62%

14400

Средний диаметр кольца, мм

86,339996

88,4

2,39%

14500

Удельная проводимость меди обмотки статора при расчетной температуре, См/мкм

48,049179

47

2,18%

14600

Удельная проводимость алюминия обмотки ротора при рабочей температуре, См/мкм

22,131147

21,5

2,85%

14700

Активное сопротивление обмотки фазы r1, Ом

1,615076

1,6255

0,65%

14900

Коэффициент влияния укорочения шага на пазовое расстояние kb'

1

1

0,00%

15000

Коэффициент влияния укорочения шага на пазовое расстояние kb

1

1

0,00%

15100

Коэффициент проводимости рассеяния пазов Лп1

1,370446

1,32

3,68%

15300

Коэффициент, учитывающий влияние открытия пазов статора

0,874665

0,861

1,56%

15400

Коэффициент дифференциального рассеяния статора

0,0141

0,0141

0,00%

15500

Коэффициент проводимости дифференциального рассеяния статора

2,19873

2,16

1,76%

15600

Коэффициент проводимости рассеяния лобовых частей обмотки статора

0,87524

0,873

0,26%

15700

Коэффициент проводимости рассеяния обмотки статора

4,377843

4,355

0,52%

15800

Индуктивное сопротивление обмотки фазы статора x1, Ом

1,909349

1,942

1,71%

16000

Активное сопротивление стержня клетки, Ом

0,00009

0,00009

0,00%

16100

Коэффициент приведения тока кольца к току стержня

0,445042

0,449

0,89%

16200

Сопротивление короткозамыкающих колец, приведенное к току стержня, Ом

0,000029

0,00003

3,45%

16300

Центральный угол скоса, рад.

0,348799

0,349

0,06%

16400

Коэффициент скоса пазов ротора

0,991629

0,9965

0,49%

16500

Коэффициент приведения сопротивления обмотки ротора к обмотке статора

11155,71777

11200

0,40%

16600

Активное сопротивление обмотки ротора, приведенное к обмотке статора, Ом

1,44426

1,4103

2,35%

16800

Коэффициент проводимости рассеяния пазов Лп2

1,797166

1,796

0,06%

17000

Коэффициент дифференциального рассеяния ротора

0,016667

0,0168

0,80%

17100

Коэффициент проводимости дифференциального рассеяния

2,540713

2,487

2,11%

17200

Коэффициент проводимости рассеяние короткозамыкающих колец литой клетки

0,246217

0,254

3,16%

17300

Коэффициент проводимости рассеяния скоса пазов

1,484439

1,51

1,72%

17400

Коэффициент проводимости рассеяния обмотки ротора

6,068536

6,047

0,35%

17500

Индуктивное сопротивление обмотки ротора, Ом

0,000292

0,0002866

1,85%

17600

Индуктивное сопротивление обмотки ротора, приведенное к обмотке статора x2', Ом

3,247115

3,21

1,14%

20200

Коэффициент воздушного зазора,учит. зубчатость статора

1,321646

1,335

1,01%

20300

Коэффициент воздушного зазора,учит. зубчатость ротора

1,031148

1,033

0,18%

20400

Коэффициент, учитывающий наличие радиальных вентиляционных каналов

1

1

0,00%

20500

Коэффициент воздушного зазора

1,362813

1,379

1,19%

20600

Магнитное напряжение воздушного зазора на один полюс, А

287,477722

292,9

1,89%

20701

Ширина зубца статора при большей ширине паза, мм

4,965736

5,11

2,91%

20702

Ширина зубца статора при меньшей ширине паза, мм

4,958164

5,08

2,46%

20703

Ширина зубца статора в расчетном сечении, мм

4,965736

5,095

2,60%

20801

Магнитная индукция в равновеликом сечении зубца статора, Т

1,765678

1,746

1,11%

20900

Расчетная длина магнитной силовой линии в зубце статора, мм

15,32744

15,1

1,48%

21000

Магнитное напряжение зубцов статора, А

20,329891

19,8

2,61%

21101

Ширина зубца ротора в расчетном сечении b32', мм

7,142888

7,05

1,30%

21102

Ширина зубца ротора в расчетном сечении b32'', мм

6,686572

6,67

0,25%

21103

Ширина зубца ротора в расчетном сечении b32, мм

6,91473

6,86

0,79%

21203

Магнитная индукция в третьем расчетном сечении B32ср, Т

1,621363

1,658

2,26%

21400

Расчетное значение напряженности магнитного поля в зубце ротора, А/см

10,09299

10,06

0,33%

21500

Расчетная длина магнитной силовой линии в зубце ротора, мм

17,54665

17,8

1,44%

21600

Магнитное напряжение зубцов ротора, А

17,78556

17,9

0,64%

22600

Высота спинки статора, мм

16,32744

16,4

0,44%

22700

Магнитная индукция в спинке статора, Т

1,561842

1,555

0,44%

22800

Расчетная длина магнитной силовой линии спинки статора, мм

62,70327

62,2

0,80%

22900

Магнитное напряжение спинки статора, А

39,574612

39,9

0,82%

23000

Расчетная длина магнитной силовой линии спинки ротора, мм

24,401339

25

2,45%

23100

Магнитное напряжение спинки ротора, А

5,380723

5,3

1,50%

23200

Намагничивающая сила магнитной цепи на один полюс, А

381,341522

375,1

1,64%

23300

Коэффициент насыщения магнитной цепи

1,302749

1,284

1,44%

23400

Намагничивающий ток, А

3,466379

3,46

0,18%

23600

Главное индуктивное сопротивление xм, Ом

41,848373

41,1

1,79%

23800

Коэффициент рассеяния статора

0,031029

0,0316

1,84%

23900

Коэффициент сопротивления статора

0,025954

0,0256

1,36%

24001

Параметр 1 схемы замещения r'1, Ом

1,615076

1,6255

0,65%

24002

Параметр 2 схемы замещения x'1, Ом

2,054622

2,003

2,51%

24003

Параметр 3 схемы замещения r''2, Ом

1,541423

1,5007

2,64%

24004

Параметр 4 схемы замещения x''2, Ом

3,477548

3,416

1,77%

24100

Реактивная составляющая тока статора при синхронном вращении, А

3,420856

3,47

1,44%

24200

Электрические потери в обмотк статора при синхронном вращении, Вт

60,172218

58,7

2,45%

24401

Магнитные потери в зубцах статора для стали марок 2013 и 2211, Вт

33,347008

33,7

1,06%

24500

Расчетная масса стали спинки статора, кг

7,482368

7,48

0,03%

24601

Магнитные потери в спинке статора для стали марок 2013 и 2211, Вт

77,302284

79,6

2,97%

24700

Суммарные магнитные потери в сердечнике статора при холостом ходе, Вт

127,922852

128,8

0,69%

24801

Механические потери для двигателей со степенью защиты IP44, Вт

21,102539

21,1

0,01%

25201

Приведенное активное сопротивление короткого замыкания, Ом

3,056499

3,1262

2,28%

25202

Приведенное индуктивное сопротивление короткого замыкания, Ом

5,602376

5,419

3,27%

25203

Приведенное полное сопротивление короткого замыкания, Ом

6,270979

6,256

0,24%

25300

Механическая мощность двигателя, Вт

4044,912109

4044,9

0,00%

25400

Добавочные потери при номинальной нагрузке, Вт

23,809523

23,8

0,04%

25500

Сопротивление схемы замещения Rн, Ом

28,695274

28,262

1,51%

25600

Полное сопротивление схемы замещения Zн, Ом

32,187267

31,853

1,04%

25800

Активная составляющая тока статора при синхронном вращении, А

0,28378

0,28

1,33%

25900

Расчетный ток ротора, А

6,979486

6,91

1,00%

26000

Активная составляющая тока статора, А

6,955801

7,15

2,79%

26100

Реактивная составляющая тока статора, А

4,232493

4,3

1,59%

26200

Фазный ток статора, А

8,242174

8,34

1,19%

27300

Электрические потери в обмотке статора при нагрузке, Вт

334,163345

339,2

1,51%

27400

Электрические потери в обмотке ротора при нагрузке, Вт

211,649506

215

1,58%

27500

Суммарные потери в двигателе, Вт

723,647766

727,9

0,59%

27600

Подводимая мощность двигателя, Вт

4565,647949

4727,9

3,55%

27700

Коэффициент полезного действия двигателя, Вт

87,610786

84,6

3,44%