Смекни!
smekni.com

Экспертные системы 12 (стр. 3 из 5)

Средства поддержки(или поддерживающее окружение) представляют собой пакеты программ, которые прилагаются к языку инженерии знаний, чтобы упростить его использование, облегчить диалог и сделать его более эффективным. Подразделяются на средства отладки, средства ввода/вывода, средства объяснения, редакторы базы знаний.

Таким образом, существует два подхода к разработке механизма вывода ЭС:

1. Использование предназначенного для построения экспертных си­стем языка высокого уровня(EMYCIN, KAS, EXPERT), в который уже встроен механизм вывода. Это об­легчает разработку ЭС, но ограничивает разработчика в выборе способа ор­ганизации знаний и доступа к ним. Предлагаемая схема управления процессом поиска реше­ния даже может быть негодна для данной предметной области.

2. Использование языка более низкого уровня(LISP, PROLOG, FORTRAN) без механизма вывода. Требует больших усилий на разработку, но позволяет разработать про­граммные блоки для схемы управления процессом решения, который будет адекватен дан­ной предметной области.

2.2.Представление знаний

В современных экспертных системах чаще всего используются три метода представления знаний:

  • правила (самый популярный);
  • семан­тические сети;
  • фреймы.

2.2.1.Методы, основанные на правилах

Представление знаний, основанное на правилах, построено на использовании выражений вида

ЕСЛИ (условие) — ТО (действие).

Пример:

[1] Если обвиняемый был с семьей в момент совершения преступления, то обвиняемый имеет алиби.

[2] Если обвиняемый имеет алиби, то обвиняемый не виновен.

Когда факты в задаче удовлетворяют части правила ЕСЛИ, то выполняется дей­ствие, определяемое частью ТО. Это действие может, например, состоять в распе­чатке текста на терминале пользователя, проверке и запуске некоторого набора правил или сводиться к указанию системе о добавлении нового факта или гипотезы в базу данных.

Сопоставление частей ЕСЛИ правил с фактами может по­родить так называемую цепочку выводов.


Рис. 4. Цепочка вывода для получения заключения о невиновности обвиняемого.

Правила обеспечивают естественный способ описания про­цессов, управляемых сложной и быстро изменяющейся внеш­ней средой. Через правила можно определять, как программа должна реагировать на изменение данных, а схема передачи управления и использования данных уже предопределена. Обработка здесь осуществляется последовательными шагами, а ветвление имеет место только в заранее выбранных точках. Этот способ управления хорошо работает в случае задач, до­пускающих алгоритмическое решение, если к тому же при этом данные меняются достаточно медленно, например, при решении систем линейных уравнений. Для задач, ход решения которых управляется самими данными, где ветвление скорее норма, чем исключение, этот способ малоэффективен. В зада­чах такого рода правила дают возможность на каждом шаге оценить ситуацию и предпринять соответствующие действия. Использование правил упрощает объяснение того, как программа пришла к кон­кретному заключению.

2.2.2.Представление знаний с использованием семантических сетей

Термин семантическая сеть применяется для описания ме­тода представления знаний, основанного на сетевой структуре.

Семантические сети были первоначально разработаны как психологические модели человече­ской памяти, но теперь это стандартный метод представления знаний в ИИ и в экспертных системах.

Семантические сети состоят из узлов, и связывающих их дуг. Узлы соответствуют объектам, концепциям или собы­тиям. Дуги описывают отношения между узлами и могут быть определены разными методами, завися­щими от вида представляемых знаний. Обычно дуги, используе­мые для представления иерархии, включают дуги типа isa (яв­ляется) и has-part (имеет часть).

Например, два предложения «Куин Мэри является океанским лайнером» и «Каждый океанский лайнер является кораблем» удобно представить через семантическую сеть с использованием важного типа дуг: является.

Так как отношение является транзитивно(a→bи b→c, то a→c), из сети можно вывести третье утверждение: «Куин Мэри является кораблем». Отношение является и другие отношения, как например имеет-часть, устанав­ливают свойство иерархии наследования в сети. Т.е. в сети элементы более низкого уровня могут наследовать свойства элементов более высокого уровня.

Рассмотрим семантическую сеть, представляющую корабль.

Части корабля, такие, как двигательная установка, корпус, котель­ная, включены один раз на уровне корабля, и не нужно повторять эти узлы на более низком уровне иерархии, вроде типа корабля или конкретного корабля. На практике это свойство семантической сети позволяет сберечь огромные объемы памяти. Зная смысл отношений, обозначаемых дугами, можно осуществлять поиск по сети, например, чтобы установить факты вроде «Куин Мэри имеет котельную». Семантические сети – один из самых удачных методов пред­ставления знаний о предметной области, который сильно уп­рощает поиск решения задач.

2.2.3.Методы, основанные на фреймах

В области искусственного интеллекта термином фрейм обозначается специальный метод представления общих концепций и ситуаций.

Предложивший идею фрейма Марвин Минский, описывает его так:

«Фрейм – это структура данных, представляющая стереотипную си­туацию, вроде нахождения внутри некоторого рода жилой комнаты, или сбора на вечеринку по поводу дня рождения ребенка. К каждому фрейму присоединяется несколько видов информации. Часть этой ин­формации – о том, как использовать фрейм. Часть – о том, чего можно ожидать далее. Часть – о том, что следует делать, если эти ожидания не подтвердятся»

Фрейм является сетью узлов и отношений, организованных иерархически, где верхние узлы представляют общие понятия, а нижние узлы более частные случаи этих понятий или их свойства. Фрейм по своей организации во многом похож на семан­тическую сеть. Не случайно в ряде работ фреймы и семантические сети рассматриваются как методы представления знаний, основанных на фреймах. Они обеспечивают естественный и эффективный путь классифика­ции и систематизации знаний.

2.3.Основные характеристики экспертных систем

Специалисты в области ИИ имеют несколько более сложное представление о том, что такое экспертные системы.

Рис. 5. Особенности экспертной системы, отличающие ее от обычных про­грамм.

Компетентность

Умелая ЭС применяет знания эффективно и быстро, избегая громоздких или ненужных вычислений. Чтобы по-настоящему подра­жать поведению эксперта-человека, ЭС дол­жна обладать робастностью, т.е. уметь лишь постепенно сни­жать качество работы по мере приближения к грани­цам диапазона компетентности или допустимой на­дежности данных.

Символьные рассуждения

Эксперты, решая какие-то задачи (особенно такого типа, для решения которых применяются экспертные системы), об­ходятся без решения систем уравнений или других трудоемких математических вычислений. Вместо этого они с помощью сим­волов представляют понятия предметной области и применяют различные стратегии и эвристики в процессе манипулирования этими понятиями.

При решении задачи экспертная система способна выполнять определенные математические расчеты, но в основном она манипулирует сим­волами, которые соответ­ствуют понятиям предметной области. На жаргоне ИИ сим­вол – это строка знаков, соответствующая содержанию неко­торого понятия реального мира. Ниже приведены примеры символов,

продукт

ответчик

0.8

Эти символы можно объединить, чтобы выразить отноше­ния между ними. Когда эти отношения представлены в про­грамме ИИ, они называются символьными структурами. Да­лее приведены примеры символьных структур:

(ДЕФЕКТНЫЙ продукт)

(ВЫПУЩЕННЫЙ ответчиком продукт)

(РАВНО (ОТВЕТСТВЕННОСТЬ ответчик) 0.8)

Эти структуры можно интерпретировать следующим обра­зом: «продукт является дефектным», «продукт был выпущен в продажу ответчиком» и «ответственность ответчика ра­вна 0.8».

Кроме того, эксперты могут получить задачу, сформулированную неким произвольным об­разом, и преобразовать ее к тому виду, который в наибольшей степени соответствует быстрому получению решения или га­рантирует его максимальную эффективность. Эта способность переформулирования задачи — как раз то свойство, которое должно быть присуще экспертным системам для того, чтобы приблизить их мастерство к уровню экспертов-людей. К сожа­лению, большинство существующих в настоящее время экс­пертных систем не обладают этим свойством.

Глубина

ЭС должна работать эффективно в узкой пред­метной области, содержащей трудные, нетривиальные задачи. Поэтому правила в ЭС дол­жны быть сложными, либо в смысле сложности каждого пра­вила, либо в смысле их обилия.

Если же по отношению к сложной задаче или данным о ней сделаны существенные упрощения, полученное решение может оказаться неприменимым в масштабах, кото­рые характерны для реальной проблемы.

Самосознание

У большинства существующих экспертных систем есть так называемый механизм объяснения. Это знания, необ­ходимые для объяснения того, как система пришла к данным решениям. Большинство объяснений включают демонстрацию цепочек выводов и доводов, объясняющих, на каком основании было применено каждое правило в цепочке. Возможность проверять собственные процессы рассуждения и объяснять свои действия – одно из самых важных свойств экспертных систем.