Ответственность за присвоение категории критичности конкретному виду информации, например, документу, файлу данных или дискете, а также за периодическую проверку этой категории следует возложить на владельца информации.
Следует с осторожностью подходить к интерпретации категорий критичности на документах других предприятий, поскольку одинаковый или похожий уровень критичности может быть определен по-другому.
При присвоении категорий критичности следует учесть следующие моменты:
- Критичная информация и выходные данные систем, содержащие критичную информацию, должны иметь соответствующие категории критичности.
- Чрезмерное засекречивание информации может привести к неоправданным дополнительным затратам в компании.
- Выходным данным информационных систем, содержащим критичную информацию, должен быть присвоен соответствующий уровень критичности. Этот уровень критичности должен отражать категорию критичности наиболее уязвимой информации в выходных данных.
Например, на предприятии вводятся следующие уровни категорий критичности информации:
- общедоступно,
- конфиденциально,
- строго конфиденциально,
- секретно.
Сотрудникам предприятия строго запрещается разглашать кому-либо информацию выше уровня конфиденциально.
1) Общедоступной информацией является информация, уже опубликованная в средствах массовой информации.
Решение о придании статуса общедоступно принимает генеральный или технический директор.
1) Конфиденциальной информацией на предприятии является любая внутренняя информация предприятия.
2) Строго конфиденциальной информацией на предприятии является:
- коммерческая информация: тексты договоров и соглашений с партнерами и клиентами, разглашение которых было бы нежелательно для предприятия;
- техническая информация (тексты отчетов, ТЗ, значимые документы, продукты, ключи лицензирования и т.д.).
Решение о придании статуса строго конфиденциально коммерческой информации принимает генеральный директор.
Решение о придании статуса строго конфиденциально технической информации принимает технический директор.
1) Секретной информацией на предприятии является:
- финансовая информация о деятельности предприятия;
- особо важная техническая информация.
Решение о придании статуса секретно финансовой информации принимает генеральный директор.
Решение о придании статуса секретно технической информации принимает технический директор.
Пользователи информационной системы предприятия должны быть категорированы с целью определения их уровня доступа к ресурсам.
Например, В информационной системе вводятся следующие категории пользователей:
- администраторы,
- топ-менеджеры,
- сотрудники,
- стажеры.
1) Группа администраторов – входят специалисты службы информационных технологий и информационной безопасности. Администраторы имеют доступ к ресурсам информационной системы с возможностью администрирования.
2) Группа топ-менеджеров – входят президент Компании, генеральный директор, технический директор.
3) Группа сотрудников – входят все сотрудники Компании.
4) Группа стажеров – входят сотрудники в период испытательного срока. Пользователи данной группы имеют минимальный уровень доступа к ресурсам информационной системы.
Инженерно-технические мероприятия — совокупность специальных технических средств и их использование для защиты информации. Выбор инженерно-технических мероприятий зависит от уровня защищенности информации, который необходимо обеспечить.
Инженерно-технические мероприятия, проводимые для защиты информационной инфраструктуры организации, могут включать использование защищенных подключений, межсетевых экранов, разграничение потоков информации между сегментами сети, использование средств шифрования и защиты от несанкционированного доступа.
В случае необходимости, в рамках проведения инженерно-технических мероприятий, может осуществляться установка в помещениях систем охранно-пожарной сигнализации, систем контроля и управления доступом.
Отдельные помещения могут быть оборудованы средствами защиты от утечки акустической (речевой) информации.
Рекомендуемые современные устройства поиска и защиты приведены в Приложении Б.
Рассмотрим некоторые технические средства, используемые в защищаемых АС.
5.2.1 Рекомендации по устранению несанкционированного использования диктофона
Проблема устранения нежелательных записей на диктофон на расстояниях ближе 1,5-2м решается многими методами.
Однако, в некоторых случаях это расстояние может потребоваться увеличить до 3-10м, что не позволяют сделать скрытно известные методы.
Предложим использовать для этого интерференционный метод. Поскольку звуковой диапазон (до 20кГц) не может быть применен для постановки помехи из-за восприятия его человеческим слухом, используем два излучателя в ультразвуковом диапазоне (30-50кГц). Их частоты F1 и F2 выбираем таким образом, чтобы ΔF= /F1-F2/<(1-3) кГц.
Здесь: 1-диктофон (предполагаемый);
2-аппаратура устранения записи (скрытно);
3-генератор гармонического сигнала частоты F1 с ультразвуковым излучателем;
4- то же на частоте F2;
D1 – расстояние предполагаемого диктофона от аппаратуры устранения записи (постановщика гармонической интерференционной помехи), может быть более 1,5-2м;
D2 – расстояние между излучателями (выбирается в пределах от нескольких сантиметров до десятков).
Принцип работы следующий: излучения гармонических ультразвуковых колебаний каждого в отдельности не прослушиваются человеческим слухом (однако тренированная собака их может уловить). Человеческое ухо достаточно линейно в амплитудном отношении и поэтому интерференционных явлений не будет.
Микрофон диктофона сугубо нелинейный элемент и поэтому на входе диктофона возникнет интерференционный процесс, который приведет к подавлению записи речи сигналом разностной частоты. Уровень ультразвуковых колебаний используется в пределах 80-100дБ и лучше, если он будет подобран опытным путем в аналогичном помещении и с диктофоном похожим на предполагаемый.
Этот метод может использоваться также и в автомобилях и в самолетах.
Рассмотрим несколько устройств и методов, которые могут быть использованы для улучшения постановки помех с целью защиты от несанкционированного доступа к информации.
Первое устройство может быть применено при решении различных задач постановки помех и повышения периода случайности в постановщиках помех.
Функциональная схема содержит генератор 1 равномерно распределенных случайных чисел, выход которого соединен со входом цифроаналогового преобразователя 2, блок 3 усреднения, выход которого соединен со входом сумматора 4, выход которого соединен со входом блока 5 сравнения, второй вход которого соединен с выходом цифроаналогового преобразователя 2, а выход - через прерыватель 6 и формирователь 7 импульсов соединен со входами генератора 1 равномерно распределенных случайных чисел и генератора 8 экспоненциального напряжения, выход которого соединен со входами блока 3 усреднения и сумматора 4.
Генератор пуассоновского потока импульсов работает следующим образом.
Генератор 1 случайных чисел вырабатывает случайное число, равномерно распределенное в некотором фиксированном интервале. На выходе цифроаналогового преобразователя 2 образуется аналоговый сигнал, амплитуда которого пропорциональна сформированному случайному числу.
Синхронно с генератором 1 случайных чисел включается и генератор 8, амплитуда выходного сигнала которого возрастает по экспоненциальному закону. Сигнал с выхода генератора 8 поступает на один из входов сумматора 4 и вход блока 3 усреднения, на выходе которого образуется сигнал пропорциональный разности теоретического и текущего средних значений непрерывного случайного напряжения с равномерным распределением амплитуд с выхода генератора 8. Этот сигнал поступает на другой вход сумматора 4. Напряжение на выходе сумматора 4 с помощью блока 5 сравнивается с аналоговым напряжением цифроаналогового преобразователя 2, и в момент равенства этих напряжений блок 5 выдает сигнал, который, проходя через прерыватель 6, поступает на вход формирователя 7 импульсов.
Сигнал с выхода формирователя 7 вновь запускает генератор 8 экспоненциального напряжения и считывает с генератора 1 вновь сформированное равномерно распределенное число.
Сигнал с выхода блока 3 усреднения выполняет функцию сигнала обратной связи, который автоматически поддерживает интенсивность пуассоновского потока на заданном уровне. Если текущее среднее случайное напряжение с выхода генератора 8 совпадает с теоретическим, то сигнал на выходе блока 3 отсутствует. При дрейфе параметров устройства на выходе блока 3 появляется разностный сигнал полярности, соответствующий отклонению интенсивности потока на выходе устройства от заданной. Этот сигнал, суммируясь с экспоненциально изменяющимся напряжением, компенсирует дрейф.
Использование новых блоков. — сумматора и блока усреднения позволяет повысить точность результатов исследований систем массового обслуживания, в которых применяется датчик потока электрических импульсов, распределенных по закону Пуассона; снизить требования к стабильности и температурной устойчивости источников питания и узлов датчика, что упростит конструктивные и схемные решения; устранить дополнительную погрешность, вызываемую усечением экспоненциального закона распределения, так как в предлагаемом устройстве устраняется необходимость выделения запаса по напряжению на случай дрейфа параметров.