Смекни!
smekni.com

Загальні аспекти розробки систем зі штучним інтелектом (стр. 1 из 3)

Реферат на тему:

Загальні аспекти розробки систем зі штучним інтелектом

Інтелектуальна діяльність — це дії та розумові висновки людей у нестандартних ситуаціях, коли схема, алгоритм задачі, яка постала перед спеціалістом, апріорі невідомі. Системами штучного інтелекту називають системи, які здатні виконувати операції, імітуючи інтелектуальні функції людини.

Створення систем штучного інтелекту (ШІ) — це багатоаспектне дослідження, яке потребує вирішення кількох груп проблем. На рис.1 наведено чотири групи проблем досліджень у галузі штучного інтелекту. Перша група проблем пов'язана з імітацією творчої розумової діяльності людини. Сутність цього напрямку полягає в розробці комп'ютерних програм, які здатні до відтворення процедур, пов'язаних із творчими розумовими процесами. До таких процедур можна віднести гру в шахи, математичні задачі тощо. Частка робіт, пов'язаних з імітацією творчих процесів у загальному обсязі робіт, що мають на меті створення систем з ШІ, є невеликою. Ці дослідження, насамперед, цікаві з погляду психологів, а також для вироблення фундаментальних положень теорії ШІ.

Друга група проблем пов'язана з інтелектуалізацією ЕОМ. Інтелектуалізація ЕОМ полягає в тому, що разом з обчислювальними операціями значна увага приділяється вмінню ЕОМ виконувати логічні операції і розумові висновки з орієнтацією на користувачів-непрофесіоналів.

Третя група проблем присвячена розробці нових технологій розв'язування задач. Ця технологія базується на нових принципах обробки, в яких виконується маніпулювання нелише даними, а й знаннями таким чином, як це роблять спеціалісти, виконуючи творчу роботу.Четвертим важливим напрямком у створенні систем з ШІ є створення інтелектуальних роботів, здатних до цілеспрямованого поводження, які сприймають інформацію про зовнішнє середо-вище і залежно від цього виконують певні дії.

Розвиток інтелектуальних систем в економіці пов'язаний з роз-робкою експертних систем, а також комп'ютерних систем підтримки прийняття рішень.

Рис. 1. Схема взаємозв'язку проблем досліджень в галузі штучного інтелекту

ЕКСПЕРТНІ СИСТЕМИ ТА ЇХ ХАРАКТЕРИСТИКА

Експертна система— це комп'ютерна система, яка втілює в собі досвід експерта, що грунтується на його знаннях в певній галузі. Експертна система (ЕС) на основі обробки цих знань може давати інтелектуальні поради, приймати рішення на рівні експерта-професіонала, а також за бажанням користувача пояснювати хід розв'язування в разі відшукання того чи іншого рішення.

Основні характеристики експертної системи такі:

1. Експертна система, як правило, обмежена певною предметною областю.

2. ЕС має вміти приймати рішення за неповних чи неточних даних.

3. ЕС має вміти пояснювати свої дії при розв'язуванні задачі.

4. Система повинна мати властивість розширення та нарощування функцій.

5. ЕС має вміти імітувати діяльність висококваліфікованого спеціаліста (експерта).

6. ЕС при розв'язуванні задач використовує, як правило, не точні алгоритми, а так звані евристики, тобто методи, які спираються на досвід та знання експерта.

Головні відмінності систем обробки даних від експертних систем, що ґрунтуються на обробці знань, полягають ось у чому:

1. На виході експертної системи користувач дістає не машино-чи відеограму, яка подана в табличному вигляді, а інтелектуальну пораду, що має вигляд тексту.

2. В основу ЕС покладено технологію обробки символьної інформації, що здебільшого подається у формі правил.

3. В узагальненому вигляді системи обробки даних можна подати такою конструкцією:

ДАНІ + АЛГОРИТМ - СИСТЕМА ОБРОБКИ ДАНИХ. Структурно в узагальненому вигляді ЕС можна зобразити так:

ЗНАННЯ + РОЗУМОВИЙ ВИСНОВОК = = ЕКСПЕРТНА СИСТЕМА.

4. Експертна система має архітектуру, яка також відрізняється від архітектури традиційних систем обробки даних. Відмінності полягають у наявності в експертній системі таких блоків:

1) бази знань;

2) пояснень;

3) нагромадження знань.

Структуру експертної системи зображено на рис. 2. розглянемо характеристику основних блоків ЕС.

База знань — це сукупність відомостей про предметну область, для якої розробляється експертна система.

Для функціонування системи база знань має бути наповнена знаннями. Для цього запрошують висококваліфікованих спеціалістів у тій галузі, для якої розробляється система, вони відіграють роль експертів, завдання яких — описати всі відомі знання для функціонування ЕС. У базі знань мають бути наявні знання першого та другого родів. Знання першого роду — це загальновідомі факти, явища, закономірності, які визнані в даній предметній області й опубліковані. Знання другого роду — це набір емпіричних правил та інтуїтивних висновків, якими користуються спеціалісти, приймаючи рішення в умовах невизначеності за наявності неповної суперечливої інформації. Відомості про ці знання, як правило, не опубліковані.

У базі знань ЕС переважно містяться знання першого роду, але мають бути й знання другого роду. Якщо ці знання відсутні, то це означає поганий вибір експертів (вони не вміють формулювати свої знання чи навпаки: не хотять цього робити, щоб зберегти за собою статус унікальних спеціалістів).

Рис. 2. Структура експертної системи

Інженер з питань знань має такі обов'язки: знання, що їх подали експерти, він структурує і записує в базу знань з урахуванням правил побудови моделі знань, проектованої EC.

Усі знання, які подані в базі знань поділяються на інтенсіо-нальні та екстенсіональні.

Інтенсіональні, або абстрактні, знання являють собою по» нятійні (концептуальні) знання про об'єкти предметної області І зв'язки між ними.

Екстенсіональні (конкретні) знання — це кількісні характе. ристики інтенсіональної частини знань, тобто база даних EC.

Блок рішень, необхідний для пошуку та побудови логічних ви» сновків, які видає користувачеві EC. Дії цього блока подібні до міркувань людини-експерта, яка оцінює проблему і пропонує її гіпотетичне вирішення. Цей блок виконує функції управління процесом пошуку розв'язків, тобто він визначає спосіб і послідовність використання різних правил та процедур. Кожна ECмає містити певну кількість таких правил та процедур. Кількість правил, що їх містить середня EC, перевищує 500, а для великої ECможе перевищувати й 1000.

Здебільшого блок розв'язків складається з двох частин: блока логічного виводу та управляючого блока.

Блок логічного виводу виконує дії, аналогічні до інтелектуальної діяльності спеціаліста, коли той приймає рішення. Функції цього блока — побудова логічного висновку на базі існуючих знань, які зберігаються в БЗ.

Блок управління керує процесом пошуку рішення, тобто визначає послідовність використання різних правил і процедур маніпулювання знаннями.

Блок пояснень слугує для видачі за запитом користувача послідовності логічних висновків та міркувань, якими оперувала система у процесі пошуку рішення. Наявність такого блока в ECдає змогу використовувати її не лише для прийняття рішень, а й для процесу навчання як навчальну систему.

Проблема пояснень та обгрунтування правильності міркувань— важлива й складна задача. Адже попри те, що система містить знання експертів та надає поради, відповідальність за прийняте рішення несе особисто користувач. Досі немає правових актів, які б визначали відповідальність експертів за знання, надані системі, а також за рішення, які приймаються в результаті консультування користувачів з EC, яка містить знання даного експерта чи групи експертів.

Оцінка EC користувачем значною мірою залежить від того, наскільки праця з експертною системою схожа на співробітництво з експертом, і, відповідно, істотно залежить від якості пояснень, що їх надає система користувачеві на ті запитання, які викликають у нього сумнів. Усі питання, які можуть виникнути в користувача при роботі з EC, можна поділити на такі групи: пов'язані з процесом рішення проблеми (як і чому? з якою метою? з яким результатом? з чого це випливає?); стосовно значень термінів, які прийняті в ЕС при організації діалогу з користувачем; про причини виникнення певного запитання у процесі експертизи; стосовно наслідків, які випливають із даної користувачем відповіді на запитання, поставлене системою (наприклад, що буде, коли?).

Для того щоб ЕС змогла швидко і якісно пояснювати правильність своїх відповідей, а також доцільність поставлених запитань, вона записує в робочій пам'яті хід своїх міркувань та їх послідовність.

Факт можливості дістати пояснення породжує в користувача ілюзію, ніби-то система перевіряє відповідність правил, що записані в базі знань. Між тим ЕС пояснює свої дії виключно лише видаючи інформацію про хід процесу міркувань. Наприклад, в ЕС продукційного типу пояснення записуються в базу знань за допомогою модифікованого правила продукції:

Правило XXXЯКЩО < умова >

ТО < висновок чи дія >

ТОМУ ЩО < обгрунтування >

Обґрунтування — це текст, що його дістане користувач після використання даного правила, маючи намір дістати пояснення.

Блок спілкування з користувачем або інтерфейс користувача необхідний для організації діалогової взаємодії між системою і користувачем. Основна вимога до цього блока — це реалізація спілкування природною мовою користувача.

Блок нагромадження знань. ЕС здебільшого будується для таких предметних областей, які характеризуються необхідністю актуалізації та розширення знань. З огляду на це ЕС містить блок, який дає змогу експерту завантажувати базу знань, а також виконувати редагування знань, які зібрані в базі. Усе більший інтерес викликає питання автоматизованого набуття знань експертною системою (актуалізація, коригування та розширення знань ЕС через процес навчання ЕС). Проблему навчання можна звести до створення нових понять та правил на базі існуючих, а також підключення їх в базу знань таким чином, аби не було суперечливості знань.