Смекни!
smekni.com

Синтез микропрограммного управляющего автомата (стр. 4 из 7)

Далее составляем прямую структурную таблицу переходов и выходов автомата Мили и по известному правилу формируем логические выражения для функций возбуждения.

Таблица 11. Прямая структурная таблица переходов и выходов автомата Мили.

Исходное состояние

Код am

Состояние перехода as

Код as

Входной сигнал X(am,as) Выходные сигналы Y(am,as) Функции возбуждения триггеров
RS T
a0 0000

a0

a1

0000

0001

X1

X1

-

Y1(y1,y2,y3)

S4

T4

a1 0001

a2

a9

0011

1000

X2

X2

Y6(y4,y6)

Y9(y1,y3)

S3

S1R4

T3

T1T4

a2 0011

a2

a3

0011

0010

X1

X1

-

Y2(y2)

R4

T4

a3 0010

a4

a4

a9

0110

0110

1000

X2X3

X2X3

X2

-

Y3(y3)

Y9(y1,y3)

S2

S2

S1R3

T2

T2

T1T3

a4 0110

a5

a5

0111

0111

X4

X4

-

Y6(y4,y6)

S4

S4

T4

T4

a5 0111

a6

a6

0101

0101

X5

X5

-

Y4(y4)

R3

R3

T3

T3

a6 0101 a7 0100 1 Y5(y5) R4 T4
a7 0100

a5

a8

0111

1100

X6

X6

-

-

R3R4

S1

T3T4

T1

a8 1100

a0

a8

a9

0000

1100

1000

X7X8

X7

X7X8

-

Y7(y7)

-

R1R2

R2

T1T2

T2

a9 1000

a0

a9

0000

1000

X9

X9

-

Y8(y8)

R1 T1

Так как мы изменили используемые элементы памяти, то у нас изменятся логические выражения для функций их возбуждения, а логические выражения для функций выходов не изменятся.

S1= a1x2 v a3x2 v a7x6

S2= a3x2

S3= a1x2

S4= a0x1 v a4

R1= a8x7x8 v a9x9

R2= a8x7

R3= a3x2 v a5 v a7x6

R4= a1x2 v a2x1 v a6 v a7x6

После упрощения и выделения общих частей, получим:

f= a1x2

g= a3x2

k= a7x6

m= a8x7

p= a3x2

q= a1x2

r= a0x1

h= a2x1

e= r v a1x2 v g

n= q v a4x4

S1= f v g v a7x6

S2= p

S3= q

S4= r v a4

R1= mx8 v a9x9

R2= m

R3= g v a5 v k

R4= f v h v a6 v k

y1= e

y2= r v h

y3= e v px3

y4= n v a5x5

y5= a6

y6= n

y7= a8x7

y8=a9x9

С использованием в качестве элементов памяти RS-триггеров,цена комбинационной схемы по Квайну для автомата Мили равна C=59 причем в схеме предполагается использовать 4-входовой дешифратор.


7.7 Кодирование на T-триггерах

Вкачествеэлементов памяти возможноиспользование нетолько D-триггеров и RS-триггеров, а также используются T-триггеры. При использовании T-триггеров используется такая же кодировка, как и для RS-триггеров. Кодирования для T-триггеров изображены в таблице 10.

7.8 Получение логических выражений для функций возбуждения T-триггеров

Далее составляем прямую структурную таблицу переходов и выходов автомата Мили (таблица 11) и по известному правилу формируем логические выражения для функций возбуждения.

Так как мы изменили используемые элементы памяти, то у нас изменятся логические выражения для функций их возбуждения, а логические выражения для функций выходов не изменятся.

T1= a1x2 v a3x2 v a7x6 v a8x7x8 v a9x9

T2= a3x2 v a8x7

T3= a1x2 v a3x2 v a5 v a7x6

T4= a0x1 v a4 v a1x2 v a2x1 v a6 v a7x6

После упрощения и выделения общих частей, получим:

f= a1x2

g= a3x2

k= a7x6

m= a8x7

p= a3x2

q= a1x2

r= a0x1

h= a2x1

e= r v a1x2 v g

n= q v a4x4

i= r v h

T1= f v g v a7x6 v mx8 v a9x9

T2= p v m

T3= q v g v a5 v k

T4= i v a4 v f v a6 v k

y1= e

y2= i

y3= e v px3

y4= n v a5x5

y5= a6

y6= n

y7= a8x7

y8=a9x9

С использованием в качестве элементов памяти T-триггеров,цена комбинационной схемы по Квайну для автомата Мили равна C=61 причем в схеме предполагается использовать 4-входовой дешифратор.


7.9 Кодирование на счетчике

Для кодирования состояний автомата на счётчике необходимо, чтобы разность кодов между соседними состояниями составляла единицу. Данная кодировка представлена в таблице 12.

Таблица 12

As a0 a1 a2 a3 a4 a5 a6 a7 a8 a9
K{as} 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001

7.10 Получение уравнений для счетчика

Составляем прямую структурную таблицу переходов и выходов автомата Мили и по известному правилу формируем логические выражения для функций возбуждения.

Таблица 13. Прямая структурная таблица переходов и выходов автомата Мили.

Исходное состояние

Код am

Состояние перехода as

Код as

Входной сигнал X(am,as) Выходные сигналы Y(am,as) Функции возбуждения
a0 0000

a0

a1

0000

0001

X1

X1

-

Y1(y1,y2,y3)

E+1

a1 0001

a2

a9

0010

1001

X2

X2

Y6(y4,y6)

Y9(y1,y3)

E+1

D1D8 M

a2 0010

a2

a3

0010

0011

X1

X1

-

Y2(y2)

E+1

a3 0011

a4

a4

a9

0100

0100

1001

X2X3

X2X3

X2

-

Y3(y3)

Y9(y1,y3)

E+1

E+1

D1D8 M

a4 0100

a5

a5

0101

0101

X4

X4

-

Y6(y4,y6)

E+1

E+1

a5 0101

a6

a6

0110

0110

X5

X5

-

Y4(y4)

E+1

E+1

a6 0110 a7 0111 1 Y5(y5) E+1
a7 0111

a5

a8

0101

1000

X6

X6

-

-

D1D4 M

E+1

a8 1000

a0

a8

a9

0000

1000

1001

X7X8

X7

X7X8

-

Y7(y7)

-

M

E+1

a9 1001

a0

a9

0000

1001

X9

X9

-

Y8(y8)

M

M – вход управления записью / счётом в счётчике;

E+1 - вход управления прямым счётом;

Работа счётчика производится в соответствии с таблицей 14.


Таблица 14

М E+1 Режим

0

1

1

1

0

1

0

0

Запись в счётчик

Прямой счёт

Обратный счёт

Хранение

Из таблицы 13 получаются логические выражения для каждой функции возбуждения управляющего входа счётчика,а также для функций выходов как конъюнкции соответствующих исходных состояний amи входных сигналов, которые объединены знаками дизъюнкции для всех строк, содержащих данную функцию возбуждения или соответственно функцию выхода.

M = a1x2 v a3x2 v a7x6 v a8x7x8 v a9x9

E+1 = a0x1 v a1x2 v a2x1 v a3x2 v a4 v a5 v a6 v a7x6 v a8x7x8

D1 = a1x2 v a3x2 v a7x6

D4 = a7x6

D8 = a1x2 v a3x2

y1 = a0x1 v a1x2 v a3x2

y2 = a0x1 v a2x1

y3 = a0x1 v a1x2 v a3x2x3 v a3x2

y4 = a1x2 v a4x4 v a5x5

y5 = a6

y6 = a1x2 v a4x4

y7 = a8x7

y8 =a9x9

После выделения общих частей в логических выражениях и некоторого их упрощения получаются логические уравнения для построения функциональной схемы управляющего автомата.