Смекни!
smekni.com

Экономико математическая модель (стр. 3 из 3)

(3)

Коэффициент регрессии считается статистически значимым , если tрасчетное › tтабличное с заданными параметрами (уровнем значимости α, = 0,05, и числом степеней свободы υ = n - к -1, где n – число наблюдений, к – число факторных признаков).

Проверка адекватности модели осуществляется с помощью F – критерия Фишера и величины средней ошибки аппроксимации, которая не должна превышать 12 – 15% . Если величина Fрасчетное > Fтабличное , то связь признается существенной. Fтабличное находиться при заданном уровне значимости α = 0,05 и числе степеней свободы v1 =k и v2 = n-k-1. (4)

Модель без учета «Материальных затрат»


В таблице 8 сгенерированы результаты по регрессионной статистике.

Регрессионная статистика
Множественный R 0,997434896
R-квадрат 0,994876372
Нормированный R-квадрат 0,993168496
Стандартная ошибка 2219,306976
Наблюдения 13

Таблица 8

Эти результаты соответствуют следующим статистическим показателям:

Множественный R – коэффициент корреляции R,

R-квадрат – коэффициент детерминации R2;

F табличное
3,862548358

В таблице 9 сгенерированы результаты дисперсионного анализа, которые используются для проверки значимости коэффициента детерминации R2.

Таблица 9

df SS MS F Значимость F
Регрессия 3 8607337323 2869112441 582,5226438 1,2734E-10
Остаток 9 44327911,1 4925323,455
Итого 12 8651665234

Df – число степеней свободы, SS – сумма квадратов отклонений,

MS - дисперсия MS, F – расчетное значение F-критерия Фишера,

Значимость F – значение уровня значимости, соответствующее вычисленному F;

Коэффи

циенты

Стандарт

ная

ошибка

t-статистика P-Значение Нижние 95% Верхние 95%

полная

себесто-

имость,

тыс.руб

2857,593011 1130,014906 2,528810014 0,094646561 603,5411613 6318,727183
сырье, м погонный 132,3000047 8,941959918 14,79541464 1,27093E-07 112,071886 152,5281233
затраты на оплату труда,тыс.руб. 1,586039072 0,095432478 16,61948958 4,61669E-08 1,370155809 1,801922334

амортизация,

тыс.руб.

3,357368468 0,582082818 5,76785358 0,000270158 2,040605653 4,674131282

В таблице 10 сгенерированы значения коэффициентов регрессии и их

статистические оценки.

t табличное 2,306004133

Таблица 10

Коэффициенты – значения коэффициентов регрессии,

Стандартная ошибка – стандартные ошибки коэффициентов регрессии,

t – статистика – расчетные значения t – критерия Стьюдента, вычисляемые по формуле 2,

Р-значения – значения уровней значимости ,соответствующие вычисленным значениям t,

Нижние 95% и Верхние 95% - соответствующие границы доверительных интервалов для коэффициентов регрессии.

В таблице 11 сгенерированы предсказанные значения результирующего фактора Y и значения остатков. Последние вычисляются как разность между предсказанным и исходным значениям Y.

Наблюдение Предсказанное Y Остатки
1 78576,42428 -412,4242814
2 61255,20002 -187,2000206
3 33691,17456 -3127,174561
4 31418,51735 331,4826465
5 91894,70678 1716,293221
6 79104,48549 -2045,485491
7 56074,39615 -2280,396148
8 79355,80571 1974,194293
9 58940,14712 -1761,147116
10 88956,30336 682,6966372
11 49227,81005 2011,189951
12 18467,43597 3221,564032
13 10633,59316 -123,5931632

Таблица 11

Расчет производился в оболочке «Excel», Сервис → Анализ данных → Регрессия.

tтабличное рассчитывалось с помощью функции СТЬЮДРАСПОБР исходя из формулы (3).

Fтабличное рассчитывалось с помощью функции FРАСПОБР исходя из формулы (4).

Модель без учета «Сырья»

Регрессионная статистика
Множественный R 0,983232832
R-квадрат 0,966746802
Нормированный R-квадрат 0,955662403
Стандартная ошибка 5653,863353
Наблюдения 13

Таблица 12

df SS MS F Значимость F
Регрессия 3 8363969696 2787989899 87,21688674 5,68904E-07
Остаток 9 287695537,3 31966170,81
Итого 12 8651665234

Таблица 13

Коэффи

циенты

Станда

ртная

ошибка

t-статистика P-Значение

Нижние

95%

Верхние 95%

полная

себесто

имость,

тыс.руб

1992,888488 4236,311712 0,470430087 0,649239402 -7590,314376 11576,09135
затраты на оплату труда, тыс.руб. 1,430363491 0,248983274 5,744817576 0,000278107 0,867124195 1,993602788
материальные затраты, тыс.руб 1,187585684 0,232389908 5,11031521 0,000636233 0,661883189 1,713288179

аморти

зация,

тыс.руб.

2,461032929 1,536123969 1,602105675 0,143596048 -1,013920904 5,935986761
t табличное 2,306004133

Таблица 14

Наблюдение Предсказанное Y Остатки
1 65758,37475 12405,62525
2 60420,80042 647,1995839
3 30995,16308 -431,1630845
4 29093,4229 2656,577097
5 99410,20661 -5799,206609
6 74070,10843 2988,891574
7 55740,66995 -1946,669945
8 77635,1743 3694,825697
9 63565,34811 -6386,348112
10 89934,05543 -295,0554319
11 55762,64509 -4523,645092
12 23554,57043 -1865,57043
13 11655,4605 -1145,460501

Таблица 15

Все пояснения к таблицам , а также способ расчета, указаны в модели без учета «Материальных затрат» .

Перейдем к анализу сгенерированных таблиц обеих моделей.

Значение множественного коэффициента регрессии R в модели без учета «Материальных затрат» равно 0, 997, а в модели без учета «Сырья» равно 0,983. Это позволяет сделать вывод, что первая модель точнее отражает реальную связь.

При оценке значимости коэффициентов регрессии с помощью сравнения расчетного и табличного значений t – критерия Стьюдента стало очевидно, что следует выбрать модель «Материальных затрат». В данной модели tрасчетное найденных коэффициентов превышает tтабличное (см. таблицу 10) t – критерия Стьюдента, что позволяет сделать вывод, что коэффициенты регрессии в уравнении являются значимыми.

Тогда как в модели без учета «Сырья» два коэффициента регрессии ниже tтабличное ( см. таблицу 14), что говорит об отсутствии их значимости.

Проверку адекватности модели осуществляем уже только с моделью без учета «Материальных затрат».

Значение средней ошибки аппроксимации не превышает 12-15 %, что хорошо видно на рисунке 2, так как разница между предсказанным и исходным результирующим фактором Y очень небольшая.

Рассчитанный уровень значимости (см. таблицу 9) равен 1,2734E-10 < 0,05, это подтверждает значимость R2. Значение Fрасчетное – критерия Фишера больше Fтабличное, значит связь между признаками признается существенной.

Рисунок 2

Таким образом, получаем искомое уравнение регрессии:

Выводы: Выполнив данную работу по этапам, была построена экономико-математическая модель методом математической статистики на примере ОАО швейной фабрики «Березка». Модель имеет вид:

.

Выбранные факторы Х12 и Х3 существенно влияют на У, что подтверждает правильность их включения в построенную модель.

Так как коэффициент детерминации R2 значим, то это свидетельствует о существенности связи между рассматриваемыми признаками.

Отсюда следует, что построенная модель эффективна.