Найти программу максимального выпуска продукции.
Таблица 5.
факторы | Способ производства | Ресурсы, грн | ||||
1 | 2 | 3 | 4 | 5 | ||
Сырье | 12 | 15 | 10 | 12 | 11 | 1300 |
Эл.энергия | 0,2 | 0,1 | 0,2 | 0,25 | 0,3 | 30 |
Зарплата | 3 | 4 | 5 | 4 | 2 | 400 |
Накладные расходы | 6 | 5 | 4 | 6 | 4 | 800 |
Математическая интерпретация задачи
Исходные массивы, записанные в виде, пригодном для решения задачи по программе SIMC
5
4
12.000 15.000 10.000 12.000 11.000 < 1300.000
0.200 0.100 0.200 0.250 0.300 < 30.000
3.000 4.000 5.000 4.000 2.000 < 400.000
6.000 5.000 4.000 6.000 4.000 < 800.000
300.000 260.000 320.000 400.000 450.000
Распечатка ЭВМ в результатом решения
ИТЕРАЦИЯ N=1 РЕШЕНИЕ НАЙДЕНО !!!
ТЕКУЩАЯ СИМПЛЕКС-ТАБЛИЦА ЗАДАЧА НЕ ВЫРОЖДЕНА
Бx Cб Po 1 2 3 4 5
6 0.000 1300.000 12.000 15.000 10.000 12.000 11.000
7 0.000 30.000 0.200 0.100 0.200 0.250 0.300
8 0.000 400.000 3.000 4.000 5.000 4.000 2.000
9 0.000 800.000 6.000 5.000 4.000 6.000 4.000
0.000 300.000 260.000 320.000 400.000 450.000
КОД ОШИБКИ=0
ОПТИМАЛЬНОЕ ЗНАЧЕНИЕ БАЗИС-ВЕКТОРА И РЕШЕНИЕ
ОПТИМУМ ЦЕЛЕВОЙ ФУНКЦИИ = 0.0000
ИТЕРАЦИЯ N=1 ПРОДОЛЖЕНИЕ РЕШЕНИЯ ТЕКУЩАЯ СИМПЛЕКС-ТАБЛИЦА ЗАДАЧА НЕ ВЫРОЖДЕНА
Бx Cб Po 1 2 3 4 5
6 0.000 1300.000 12.000 15.000 10.000 12.000 11.000
7 0.000 30.000 0.200 0.100 0.200 0.250 0.300
8 0.000 400.000 3.000 4.000 5.000 4.000 2.000
9 0.000 800.000 6.000 5.000 4.000 6.000 4.000
0.000 -300.000 -260.000 -320.000 -400.000 -450.000
В БАЗИС ВВОДИТСЯ 5 СТОЛБЕЦ
ИЗ БАЗИСА ВЫВОДИТСЯ 7 СТОЛБЕЦ
ИТЕРАЦИЯ N=2 ПРОДОЛЖЕНИЕ РЕШЕНИЯ ТЕКУЩАЯ СИМПЛЕКС-ТАБЛИЦА ЗАДАЧА НЕ ВЫРОЖДЕНА
Бx Cб Po 1 2 3 4 7
6 0.000 200.000 4.667 11.333 2.667 2.833 -36.667
5 450.000 100.000 0.667 0.333 0.667 0.833 3.333
8 0.000 200.000 1.667 3.333 3.667 2.333 -6.667
9 0.000 400.000 3.333 3.667 1.333 2.667 -13.333
45000.000 -0.000 -110.000 -20.000 -25.000 1500.000
В БАЗИС ВВОДИТСЯ 2 СТОЛБЕЦ
ИЗ БАЗИСА ВЫВОДИТСЯ 6 СТОЛБЕЦ
ИТЕРАЦИЯ N=3 ПРОДОЛЖЕНИЕ РЕШЕНИЯ ТЕКУЩАЯ СИМПЛЕКС-ТАБЛИЦА ЗАДАЧА НЕ ВЫРОЖДЕНА
Бx Cб Po 1 3 4 6 7
2 260.000 17.647 0.412 0.235 0.250 0.088 -3.235
5 450.000 94.118 0.529 0.588 0.750 -0.029 4.412
8 0.000 141.176 0.294 2.882 1.500 -0.294 4.118
9 0.000 335.294 1.824 0.471 1.750 -0.324 -1.471
46941.176 45.294 5.882 2.500 9.706 1144.118
КОД ОШИБКИ=0
ОПТИМАЛЬНОЕ ЗНАЧЕНИЕ БАЗИС-ВЕКТОРА И РЕШЕНИЕ
X2=17.6471
X5=94.1176
ОПТИМУМ ЦЕЛЕВОЙ ФУНКЦИИ = 46941.1765
РЕШЕНИЕ НАЙДЕНО !!!
Оптимальный план. Экономическая интерпретация оптимального решения. В соответствии с полученным результатом выпуск продукции по 1,3 и 4 технологическим процессам нецелесообразен.
Задание 4
Моделирование транспортных задач и их решение методом потенциалов
Цель задания: приобрести практические навыки моделирования и решения транспортной задачи ЛП методом потенциалов.
Индивидуальное задание
Составить оптимальное распределение трех видов механизмов на четырех участках работ, обеспечивающих минимальную себестоимость выполнения всей работы. Количество единиц механизмов, потребности участков в механизмах и себестоимость выполнения единицы работы каждым механизмом на соответствующем участке приведены в таблице 6.
Таблица 6. 06 вариант транспортной задачи
Вид механизма | Себестоимость выполнения единицы работы механизма ,гр. | Количество единиц ai механизмов | |||
B1 | B2 | B3 | B4 | ||
A1 | 11 | 4 | 3 | 1 | 15 |
A2 | 6 | 8 | 9 | 7 | 10 |
A3 | 4 | 8 | 4 | 2 | 35 |
Потребности bj участков в механизмах | 25 | 20 | 10 | 5 |
Математическая формулировка транспортной задачи
Пусть xij – количество единиц работы, выполненной механизмом вида ai, на участке работы bj.Требуется определить план распределения механизмов, минимизирующий себестоимость выполнения всей работы:
при ограничениях:
1)
; - все механизмы должны быть задействованы;2)
; - все участки должны быть загружены;3)
; - количество единиц работы не может быть отрицательнымУсловие разрешимости задачи выполняется:
25+20+10+5=15+10+35; 60=60.
Исходный опорный план, составленный по методу северо-западного угла
Таблица 7
I | ai | ||||
B1 | B2 | B3 | B4 | ||
A1 | 11 | 4 15 | 3 | 1 | 15 |
A2 | 6 5 | 8 5 | 9 | 7 | 10 |
A3 | 4 20 | 8 | 4 10 | 2 5 | 35 |
bj | 25 | 20 | 10 | 5 |
Решение транспортной задачи методом потенциалов
Итак, видно что в число занятых клеток следует ввести клетку (2,1).
Получим новый улучшенный план – таблица 8.
Таблица 8
I | ai | ||||
B1 | B2 | B3 | B4 | ||
A1 | 11 | 4 15 | 3 | 1 | 15 |
A2 | 6 5 | 8 5 | 9 | 7 | 10 |
A3 | 4 20 | 8 | 4 10 | 5 5 | 35 |
bj | 25 | 20 | 10 | 5 |
Введём в число занятых клетку (1,4) . Получим новый улучшенный план – Таблица 9.
Таблица 9
I | ai | ||||
B1 | B2 | B3 | B4 | ||
A1 | 11 | 4 10 | 3 5 | 1 | 15 |
A2 | 6 | 8 10 | 9 | 7 | 10 |
A3 | 4 25 | 8 | 4 5 | 2 5 | 35 |
bj | 25 | 20 | 10 | 5 |
Так как,
- то данный план является оптимальным и значение себестоимости по данному плану.x12=15; x21=5; x22=5; x31=20;x33=10; x34=5.
Z=15*4+5*6+5*8+20*4+10*4+5*2=260.
Анализ оптимального плана
Данный оптимальный план показывает, как нужно распределить механизмы по участкам для получения минимальной себестоимости выполненной работы.
Задание 5
Решение транспортной задачи на ЭВМ
Цель задания: приобрести практические навыки решения транспортной задачи на ЭВМ с использованием прикладной программы TRAN2.
Индивидуальное задание:
Составить оптимальное распределение трех видов механизмов на четырех участках работ, обеспечивающих минимальную себестоимость выполнения всей работы. Количество единиц механизмов, потребности участков в механизмах и себестоимость выполнения единицы работы каждым механизмом на соответствующем участке приведены в таблице 6.
Таблица 10. 06 вариант транспортной задачи
Вид механизма | Себестоимость выполнения единицы работы механизма ,гр. | Количество единиц ai механизмов | |||
B1 | B2 | B3 | B4 | ||
A1 | 11 | 4 | 3 | 1 | 15 |
A2 | 6 | 8 | 9 | 7 | 10 |
A3 | 4 | 8 | 4 | 2 | 35 |
Потребности bj участков в механизмах | 25 | 20 | 10 | 5 |
Исходные массивы для решения транспортной задачи по программе TRAN2
Распечатка с ЭВМ с результатом решения
Оптимальный план транспортной задачи
x12=15; x21=5; x22=5; x31=20;x33=10; x34=5.
Z=15*4+5*6+5*8+20*4+10*4+5*2=260.
Анализ результатов и выводы
Решение транспортной задачи на ЭВМ автоматизирует работу по вычислению решений транспортных задач и на тестируемом входном условие получается за 3 итерации, как и при ручном вычислении.
Задание 6
Решение многоэтапных задач методом динамического программирования