Смекни!
smekni.com

Системы счисления и представления типов данных (стр. 1 из 3)

Системы счисления и представления типов данных

Содержание

1.Позиционные системы счисления. 3

2.Переходы между основными системами счисления. 5

3.Основные 16‑ичные константы.. 5

4.Реализация целочисленных операций. 7

5.Представление отрицательных чисел. 8

6.Целочисленные типы данных в языке Си. 9

7.Вещественные типы данных в языке Си. 10

8.Кодирование символов. 12

9.Схемы алгоритмов. 14

1. Позиционные системы счисления

Позиционные системы счисления (СС) – это системы счисления, в которых количественный эквивалент каждой цифры зависит от ее положения (позиции) в записи числа. Например:

1) шестидесятиричная (Древний Вавилон) – первая позиционная система счисления. До сих пор при измерении времени используется основание равное 60 (1 мин = 60 с, 1 ч = 60 мин);

2) двенадцатеричная система счисления (широкое распространение получила в XIX в. Число12 – «дюжина»: в сутках две дюжины часов. Счет не по пальцам. а по суставам пальцев. На каждом пальце руки, кроме большого, по 3 сустава – всего 12;

3) в настоящее время наиболее распространенными позиционными системами счисления являются десятичная, двоичная, восьмеричная и шестнадцатеричная.

Система счисления – способ записи (изображения) чисел. Символы, при помощи которых записывается число, называются цифрами. Алфавитом системы счисления называется совокупность различных цифр, используемых в позиционной системе счисления для записи чисел. Например: Алфавиты некоторых позиционных систем счисления. Десятичная система: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

Двоичная система: {0, 1}

Восьмеричная система: {0, 1, 2, 3, 4, 5, 6, 7}

Шестнадцатеричная система: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F}

Количество цифр в алфавите равно основанию системы счисления. Основанием позиционной системы счисления называется количество знаков или символов, используемых для изображения числа в данной системе счисления.

Базисом позиционной системы счисления называется последовательность чисел, каждое из которых задает количественное значение или «вес» каждого разряда. Например: Базисы некоторых позиционных систем счисления.

Десятичная система: 100, 101, 102, 103, 104,…, 10n,…

Двоичная система: 20, 21, 22, 23, 24,…, 2n,…

Восьмеричная система: 80, 81, 82, 83, 84,…, 8n,…

Свернутой формой записи числа называется запись в виде

A=an-1an-2…a1a0.a-1…a-m

Именно такой формой записи чисел мы и пользуемся в повседневной жизни. Иначе свернутую форму записи называют естественной или цифровой.

Пример. Десятичное число 4718,63, двоичное число 1001,1, восьмеричное число 7764,1, шестнадцатеричное число 3АF16

Позиция цифры в числе называется разрядом: разряд возрастает справа налево, от младших к старшим, начиная с нуля. В позиционной системе счисления любое вещественное число в развернутой форме может быть представлено в следующем десятичном виде:

А= ± (an-1qn-1+an-2qn-2+ … +a0q0+a-1q-1+a-2q-2+ … +a-mq-m)

Здесь А – само число, q – основание системы счисления, ai– цифры, принадлежащие алфавиту данной системы счисления, n – число целых разрядов числа, m – число дробных разрядов числа. Развернутая форма записи числа – сумма произведений коэффициентов на степени основания системы счисления.

Пример. Десятичное число А10 = 4718,63 в развернутой форме запишется так:

А10 = 4·103 + 7·102 + 1·101 + 8·100 + 6·10-1 + 3·10-2

Двоичное число А2 = 1001,1 = 1·23 + 0·22 + 0·21 + 1·20 + 1·2-1

Восьмеричное число А8 = 7764,1 = 7·83 + 7·82 + 6·81 + 4·80 + 1·8-1

Шестнадцатеричное число А16 = 3АF16 = 3·162 + 10·161 + 15·160

2. Переходы между основными системами счисления

Основные СС имеют основания 2, 8,10, 16. Системы с основаниями 2, 8 и 16 являются родственными, так как их основания являются степенями двойки. Переходы между ними реализуются легко.

2 ® 8. Двоичное число разбивается справа налево на триады (тройки цифр) и каждая триада заменяется на 8‑ичную цифру.

2 ® 16. Двоичное число разбивается справа налево на тетрады (четверки цифр) и каждая тетрада заменяется на 16‑ичную цифру.

8 ® 16 и 16 ® 8. Преобразование идет через двоичную СС.

Любое основание ® 10. Осуществляется по определению позиционной системы счисления.

10 ® 16. Имеется два способа преобразования.

1. Метод деления «уголком» строит результирующее 16‑ичное число от младших цифр к старшим. Для этого запоминаются целые остатки от деления исходного числа на 16, пока частное не станет равным 0. Записывая эти остатки в обратном порядке, получим ответ.

2. Метод «вычерпывания» состоит из нескольких итераций. На каждой итерации исходное число х оценивается снизу максимальной степенью m нового основания p= 16: х ≥ 16m. Затем определяем число r вхождений степени 16m в число х. Наконец, 16‑ичную цифру r записываем в результирующее число в разряд с номером m. Число x заменяем на меньшее число х – r · 16m. Если новое число х = 0, то алгоритм заканчивается, и остальные разряды результата заполняем нулями. В противном случае, переходим к следующей итерации.

3. Основные 16‑ичные константы

Большинство числовых констант, которые встречаются в компьютерной технике, являются круглыми шестнадцатеричными числами. Эти числа обычно записывают в десятично-буквенном виде, имеющем формат ab, где а – десятичное число, b – буква.

Таблица 1.Шестнадцатеричные константы

16‑ичная константа Десятично-буквенное значение Примечания
0х10 24 = 16 Размер параграфа
0х100 28 = 256 Размер физического сектора
0х200 512 Размер кластера на дискете
0х400 210 = 1024 = К Килобайт
0х1000 4 К
0х10000 64 К Размер сегмента
0хА0000 640 К Верхняя граница ОЗУ для размещения исполняемого кода в DOS
0х100000 220 = М Мегабайт

Следующая таблица содержит популярные степени числа 2, а также их русские и английские названия.

Таблица 2. Степени числа 2

Показатель степени Степень Примечания
0 1
1 2
2 4
3 8
4 16
5 32
6 64
7 128
8 256
9 512
10 К = 1024 » 103, К Килобайт, Kilobyte
20 М = К·К = К2» 106, М Мегабайт, Megabyte
30 Г = К3» 109, G Гигабайт, Gigabyte
40 Т = К4 = М2» 1012, T Терабайт, Terabyte
50 П » 1015, P Петабайт, Petabyte
60 Э » 1018, E Экзабайт, Exabyte
70 З » 1021, Z Зетабайт, Zettabyte
80 Й » 1024, Y Йотабайт, Yottabyte

Последние строки кратных единиц были дополнены ГОСТом в 1991. Вычисления с числами, представленными в десятично-буквенном виде, можно осуществлять без перехода в десятичную СС. Например, 32 Т / 256 К = 245 / 218 = 227 = 128 М.

Таблицы 1 и 2 позволяют переводить 16‑ичные числа в десятично-буквенную запись без применения вычислительных средств. Например,
0х7D8A30 = 7·0x100000 + 13·0x10000 + 8·0x1000 + 10·0x100 + 3·16 = 7 M + 13·64 K + 8·4 K + 10·(K/4) + 48 = 7 M + 866,5 K + 48.

Отметим, что для десятично-буквенных чисел не выполняется дистрибутивный закон, то есть 1 М + 100 К не равен 1,1 М.

4. Реализация целочисленных операций

Представление чисел в компьютере осуществляется в двоичной СС. Однако для краткости записи чисел используют родственную 16‑ичную СС.

Определение 1. Логическим адресом ячейки памяти в ОЗУ с 20‑битной адресной шиной называется запись xxxx:yyyy, где хххх – шестнадцатеричный сегментный адрес, yyyy – шестнадцатеричное смещение. Физическим адресом этой ячейки называется число xxxx0 + yyyy.

Пример. Область кода программы расположена с ячейки 55А3:3000 по ячейку 9EEF:A0FF. Оценить размер области в килобайтах.

Решение. Физический адрес начала области 0х55А30 + 0х3000 = 0х58A30, конца области 0х9EEF0 + 0хA0FF = 0хA8FEF. Размер этой области равен 0хA8FEF– 0х58A30 + 1 = 0x505C0 = 5·64 К + 0·4 К + 10· (К/4) + 12·16= (320 + 2,5) К + 192 = 322,5 К + 192.

Определение 2. Нормализованным адресом ячейки памяти ОЗУ с 20‑битной адресной шиной называется запись xxxx:yyyy, где хххх – шестнадцатеричное число, yyyy – шестнадцатеричное смещение, не превосходящее размера параграфа, то есть из диапазона от 0 до 15.

Арифметические операции сложения, вычитания, умножения и деления с 16‑ичными числами осуществляются аналогично 10‑ичным числам, то есть «столбиком». Однако, имеются некоторые отличия.

Пример. Критерии деления 16‑ичного целого числа на 3 и на 5 выглядят одинаково: сумма цифр должна делится, соответственно, на 3 и на 5.

Пример. Оказывается в 16‑ичной СС 0x112 = 0x121, 0x122 = 0x144, 0x132 = 0x169.

Пример. Десятичное число 0,1 нельзя представить в виде конечной 2‑ичной дроби A= 0, a-1…a-m = a-12-1 + a-22-2 +… + a-m2-m. В противном случае, умножая равенство 0,1 = А на 10·2m, получим 2m = 10·(a-12m-1 +
a-22m-2 +… + a-m20). Последнее равенство невозможно, так как правая часть делится на 5, а левая – нет.

5. Представление отрицательных чисел

Целые отрицательные числа хранятся в компьютере в двоичном «дополнительном» коде: положительное двоичное число необходимо побитово инвертировать и прибавить единицу.