Смекни!
smekni.com

Численные методы решения систем линейных уравнений (стр. 1 из 6)

Курсовая работа

по информатике на тему:

«Численные методы решения

систем линейных уравнений»

Выполнил:

студент 06–ИСТ, Фадеева Т.В.

Проверил:

Ловыгина М.Б.

г. Павлово

2008

Содержание.

Теоретическая часть

1. Введение....................................................................3

2. Численные методы ..................................................6

1) Матричный метод........................................6

2) Метод Крамера.............................................9

3) Метод Гаусса …………...............................12

4) Итерации для линейных систем….…..…..17

a) Итерация Якоби..………………...…..18

b) Итерация Гаусса – Зейделя..……...…20

Практическая часть

1) Матричный метод........................................22

2) Метод Крамера.............................................24

3) Метод Гаусса……........................................26

4) Листинг программы.……………………….28

Польза введения расчётов.……………………………….65

Литература……….................................................................66

Теоретическая часть.

Введение.

Линейная алгебра – часть алгебры, изучающая векторные (линейные) пространства и их подпространства, линейные отображения (операторы), линейные, билинейные, и квадратичные функции на векторных пространствах.

Линейная алгебра, численные методы – раздел вычислительной математики, посвященный математическому описанию и исследованию процессов численного решения задач линейной алгебры.

Среди задач линейной алгебры наибольшее значение имеют две: решение системы линейных алгебраических уравнений определение собственных значений и собственных векторов матрицы. Другие часто встречающиеся задачи: обращение матрицы, вычисление определителя и т.д.

Любой численный метод линейной алгебры можно рассматривать как некоторую последовательность выполнения арифметических операций над элементами входных данных. Если при любых входных данных численный метод позволяет найти решение задачи за конечное число арифметических операций, то такой метод называется прямым. В противоположном случае численный метод называется итерационным. Прямые методы - это такие, как метод Гаусса, метод окаймления, метод пополнения, метод сопряжённых градиентов и др. Итерационные методы – это метод простой итерации, метод вращений, метод переменных направлений, метод релаксации и др. Здесь будут рассматриваться матричный метод, метод Гаусса и метод Крамера.

В данной работе будут рассмотрены численные методы в электронных таблицах Excel и программе MathCAD, MicrosoftVisualBasic.

MathCAD.

Программа MathCAD по своему назначению позволяет моделировать в электронном документе научно–технические, а также экономические расчёты в форме, достаточно близкой к общепринятым ручным расчётам. Это упрощает составление программы расчёта, автоматизирует перерасчёт и построение графических иллюстраций подобно электронным таблицам Excel, документирование результатов как в текстовом редакторе Word.

Программа Mathcad известна за лёгкость, с которой математические уравнения, текст, и графика могут быть объединены в одном документе. Кроме того, вычислительные способности Mathcad распространяются от сложения столбца чисел к решению интегралов и производных, решение систем уравнений и больше.

Достоинством MathCAD является также наличие в его составе электронных книг. Одна из них – учебник по самой программе, другие – справочник по различным разделам математики, физики, радиоэлектроники и др.

MicrosoftOfficeExcel.Если же говорить о программе Excel, которая является одной из наиболее известных в обработке электронных таблиц, то без преувеличения можно утверждать, что ее возможности практически неисчерпаемы.Обработка текста, управление базами данных - программа настолько мощна, что во многих случаях превосходит специализированные программы - редакторы или программы баз данных. Такое многообразие функций может поначалу запутать, нежели заставить применять их на практике. Но по мере приобретения опыта начинаешь по достоинству ценить то, что границ возможностей Excel тяжело достичь.За всю историю табличных расчетов с применением персональных компьютеров требования пользователей к подобным программам существенно изменились. В начале основной акцент в такой программе, как, например, Visi Calc, ставился на счетные функции. Сегодня, положение другое. Наряду с инженерными и бухгалтерскими расчетами организация и графическое изображение данных приобретают все возрастающее значение. Кроме того, многообразие функций, предлагаемое такой расчетной и графической программой, не должно осложнять работу пользователя. Программы для Windows создают для этого идеальные предпосылки.В последнее время многие как раз перешли на использование Windows в качестве своей пользовательской среды. Как следствие, многие фирмы, создающие программное обеспечение, начали предлагать большое количество программ для Windows.VisualBasic.MicrosoftVisualBasic – это мощная система программирования, позволяющая быстро и эффективно создавать приложения для MicrosoftWindows. В отличие от Excel и MathCADэто наиболее удобная программа для решения систем линейных уравнений. Простой пользовательский интерфейс, позволяющий легко переключаться с проекта формы на сам код программы.

Удобное окно для кода самой программы:

Численные методы.

Разрешимость системы линейных уравнений.

Когда мы говорим о главной матрице системы линейных уравнений, то всегда имеем в виду квадратную матрицу nЧn, т. е. матрицу с одинаковым количеством строк и столбцов. Это важно.

Если, например, количество строк (количество уравнений в системе) будет меньше, чем количество столбцов (фактически, количества неизвестных), то система будет неопределенной, т. е. мы не сможем однозначно определить все неизвестные (решить систему).

Но это не единственное ограничение. Из векторной алгебры известно, что система линейных уравнений имеет решение (однозначное) тогда и только тогда, когда ее главный определитель не равен нулю: Δ ≠ 0.

Рассмотрим случай, когда определитель системы равен нулю. Здесь возможны два варианта:

1. Δ = 0 и каждый из дополнительных определителей Δxi = 0. Это имеет место только тогда, когда коэффициенты при неизвестных xi пропорциональны, т. е. каждое уравнение системы получается из первого уравнения умножением обеих его частей на число k. При этом система имеет бесчисленное множество решений.

2. Δ = 0 и хотя бы один дополнительный определитель Δxi ≠ 0. Это имеет место только тогда, когда коэффициенты при всех неизвестных xi, пропорциональны. При этом получается система из противоречивых уравнений, которая не имеет решений.

Матричный метод решения систем линейных уравнений.

Пусть дана система линейных уравнений:

Рассмотрим матрицу, составленную из коэффициентов при неизвестных:

Свободные члены и неизвестные можно записать в виде матрицы столбцов:

Тогда, используя правило умножение матриц, эту систему уравнений можно записать так:

или

A·x = b. (1)

Равенство (1) называется матричным уравнением или системой уравнений в матричном виде.

Матрица А коэффициентов при неизвестных называется главной матрицей системы.

Иногда рассматривают также расширенную матрицу системы, т. е. главную матрицу системы, дополненную столбцом свободных членов, которую записывают в следующем виде:

Любую линейную систему уравнений можно записать в матричном виде. Например, пусть дана система:

Эта система из двух уравнений с тремя неизвестными – x, y,. В высшей математике можно рассматривать системы из очень большого числа уравнений с большим количеством неизвестных и поэтому неизвестные принято обозначать только буквой х, но с индексами:

Запишем эту систему в матричном виде:

Здесь главная матрица системы:

Расширенная матрица будет иметь вид:

Решения матричных уравнений.

Матричные уравнения решаются при помощи обратных матриц. Уравнение решается следующим образом. Пусть матрица А – невырожденная (D ≠ 0), тогда существует обратная матрица А-1. Умножив на нее обе части матричного уравнения, имеем А-1(АХ) = А-1В. Используя сочетательный закон умножения, перепишем это равенство в виде

(А-1А) Х = А-1В.

Поскольку А-1 А = Е и ЕХ = Х, находим:

Х = А-1В.

Таким образом, чтобы решить матричное уравнение, нужно:

1. Найти обратную матрицу А-1.

2. Найти произведение обратной матрицы А-1 на матрицу столбец свободных членов В, т. е А-1В.

Пользуясь определением равных матриц, записать ответ.

При этом собственно нахождение обратной матрицы – процесс достаточно трудоемкий и его программирование вряд ли можно назвать элементарной задачей. Поэтому на практике чаще применяют численные методы решения систем линейных уравнений.

К численным методам решения систем линейных уравнений относят такие как: метод Гаусса, метод Крамера, итеративные методы. В методе Гаусса, например, работают над расширенной матрицей системы. А в методе Крамера – с определителями системы, образованными по специальному правилу.