Смекни!
smekni.com

Численные методы решения систем линейных уравнений (стр. 2 из 6)

Метод Крамера.

При решении систем линейных уравнений по методу Крамера последовательно выполняется следующий алгоритм:

1. Записывают систему в матричном виде (если это еще не сделано).

2. Вычисляют главный определитель системы:

3. Вычисляют все дополнительные определители системы:

4. Если главный определитель системы не равен нулю, то выполняют пункт 5. Иначе рассматривают вопрос о разрешимости данной системы (имеет бесчисленное множество решений или не имеет решений). Находят значения всех неизвестных по формулам Крамера для решения системы n линейных уравнений с n неизвестными, которые имеют вид:

Пример 1

Решить по методу Крамера систему из трех уравнений с тремя неизвестными:

Решение

Запишем главный и побочные определители системы:

Вычислим эти определители:

Δ = 3*4*(-4)+7*(-3)*5+(-2)*(-8)*5-5*4*5-3*(-3)*(-8)-7*(-2)*(-4) = 48-105+80-100-72-56 = 128-333 = -205.

Δ1 = -112+(-45)+(-192)-(-240)-24-168 = -112-45-192+240-24-168 = 240-541 = -301.

Δ2 = -36-420-280-75+196-288 = 196-1099 = -903.

Δ3 = -144-147-30-140+27-168 = -629+27 = -602.

Главный определитель системы не равен нулю. Находим неизвестные по формулам Крамера.

Подставим найденные значения определителей в формулы Крамера:

x1 = Δ1/Δ = -301/(-205) = 1,468292682927 ≈ 1,47;

x2 = Δ2/Δ = -903/(-205) = 4,40487804878 ≈ 4,4;

x3 = Δ3/Δ = -602/(-205) = 2,936585365854 ≈ 2,93.

Вывод.

При решении систем линейных уравнений по методу Крамера используются формулы, в которых участвуют как главный, так и дополнительные определители системы:

Напомним, что главным определителем системы называется определитель главной матрицы системы, составленной из коэффициентов при неизвестных:

Если в главном определителе системы заменить поочередно столбцы коэффициентов при x1, x2,...xn на столбец свободных членов, то получим n дополнительных определителей (для каждого из n неизвестных):

При этом важен вопрос о разрешимости данной системы, который решается сравнением главного и дополнительных определителей системы с нулем:

Метод Гаусса – прямой и обратный ход.

Рассмотрим метод Гаусса. Например, пусть дана расширенная матрица некоторой системы m линейных уравнений c n неизвестными:

Будем считать, что a11 ≠ 0 (если это не так, то достаточно переставить первую и некоторую другую строку расширенной матрицы местами). Проведем следующие элементарные преобразования:

C2-(a21/a11)*C1,

...

Cm-(am1/a11)*C1,

т.е. Ci-(ai1/a11)*C1, i = 2, 3, ..., m.

Т. е. от каждой строки расширенной матрицы (кроме первой) отнимаем первую строку, умноженную на частное от деления первого элемента этой строки на диагональный элемент а11.

В результате получим матрицу:

Т. е. первая строка осталась без изменений, а в столбце под а11 на всех местах оказались нули. Обратим внимание, что преобразования коснулись всех элементов строк, начиная со второй, всей расширенной матрицы системы.

Теперь наша задача состоит в том, чтобы получить нули подо всеми диагональными элементами матрицы А – aij, где I = j.

Повторим наши элементарные преобразования, но уже для элемента α22.

C1-(a1222)*C2,

...

Cm-(αm222)*C2,

т.е. Ci-(αi222)*C2, i = 3, ..., m.

Т. е. от каждой строки расширенной матрицы (теперь кроме первой и второй) отнимаем вторую строку, умноженную на частное от деления первого элемента этой (текущей) строки на диагональный элемент α22.

Такие преобразования продолжаются до тех пор, пока матрица не приведется к верхнее - треугольному виду. Т. е. под главной диагональю не окажутся все нули:

Вспомнив, что каждая строка представляет собой одно из уравнений линейной системы уравнений, легко заметить, что последнее m-ое уравнение принимает вид:

γmn*xn = δm.

Отсюда легко можно найти значение первого корня – xn = δmmn.

Подставив это значение в предыдущее m-1-е уравнение, легко получим значение xn-1-ого корня.

Таким образом, поднимаясь до самого верха обратным ходом метода Гаусса, мы последовательно найдем все корни системы уравнений.

Пример 1

Рассмотрим систему уравнений:

Главный определитель данной системы:

Δ = [1*(-4)*(-2)+2*2*1+(-1)*(-1)*(-1)]-[1*(-4)*(-1)+2*(-1)*(-2)+2*(-1)*1] = [8+4-1]-[4+4-2] = 11-6 =5,

т. е. Δ ≠ 0.

Т. е. система определена и разрешима. Решим ее по методу Гаусса.

Проведем прямой ход метода Гаусса, выписав предварительно расширенную матрицу системы:

Получим нули под главной диагональю в первом столбце расширенной матрицы. Для получения нуля в элементе a21 (т. е. под диагональю во второй строке матрицы) вторую строку матрицы преобразуем по формуле C2-(a21/a11)*C1 = C2-(2/1)*C1 = C2-2*C1:

Аналогично поступаем и с элементом а31 (т. е. под диагональю в третьей строке матрицы). Третью строку матрицы преобразуем по формуле C3-(a31/a11)*C1 = C3-(-1/1)*C1 = C3+C1:

Таким образом, мы получили нули под главной диагональю в первом столбце расширенной матрицы. Осталось получить нуль под главной диагональю во втором столбце матрицы, т. е. на месте элемента а32. Для этого третью строку матрицы преобразуем по формуле C3-(a32/a22)*C2 = C3-(1/-2)*C2 = C3+1/2C2:

Таким образом, проведя прямой ход метода Гаусса, мы получили расширенную матрицу системы, приведенную к верхне-треугольному виду:

Эта матрица эквивалентна системе:

Обратным ходом метода Гаусса найдем корни системы. Из последнего уравнения найдем корень х3:

-5/2x3 = 3/2,

x3 = (3/2):(-5/2) = 3/2*(-2/5) = -3/5.

Корень x3 = -3/5 найден. Подставим его в верхнее (второе) уравнение системы (-2x2-3x3 = 1):

-2x2-3(-3/5) = 1,

-2x2+9/5 = 1,

-2x2 = 1-9/5,

-2x2 = -4/5,

x2 = (-4/5):(-2) = (-4/5)*(-1/2) = 2/5.

Корень x2 = 2/5 найден. Подставим его и корень х3 в верхнее (первое) уравнение системы (x1-x2+x3 = 0):

x1-2/5+(-3/5) = 0,

x1-5/5 = 0,

x1 = 5/5 = 1.

Проверка:

т. е.

т. е.

и т. д.

Вывод.

Итак, метод Гаусса (или, иначе, метод последовательного исключения неизвестных) состоит в следующем:

1. Путем элементарных преобразований систему уравнений приводят к эквивалентной ей системе с верхне-треугольной матрицей. Эти действия называют прямым ходом.

2. Из полученной треугольной системы переменные находят с помощью последовательных подстановок (обратный ход).

3. При этом все преобразования проводятся над так называемой расширенной матрицей системы, которую и приводят к верхнее - треугольному виду в прямом ходе метода.

Итерация для линейных систем.

Способ итераций дает возможность получить последовательность приближенных значений, сходящихся к точному решению системы, подобно тому, как это делается для одного уравнения.

Для определенности ограничимся системой из четырех уравнений с четырьмя неизвестными (система четвертого порядка), которую запишем в виде:

Разрешим первое уравнение системы относительно х1:

х1 = (-a12/a112-a13/a11х3-a14/a11х4-a15/a11.

Затем разрешим второе уравнение относительно х2 и т. д. Тогда систему можно переписать в виде:

гдеα = -aik/aii, i = 1, 2, 3, 4; k = 1, 2, 3, 4, 5.

Система является частным случаем записи вида: