Лабораторная работа 2
Задача о размещении(транспортная задача) – это распределительная задача, в которой работы и ресурсы измеряются в одних и тех же единицах. В таких задачах ресурсы могут быть разделены между работами, и отдельные работы могут быть выполнены с помощью различных комбинаций ресурсов.
Примером типичной транспортной задачи является распределение (транспортировка) продукции, находящейся на складах, по предприятиям-потребителям.
Исходные параметры модели ТЗ:
1. n – количество пунктов отправления, m – количество пунктов назначения.
2.
3.
4.
Искомые параметры модели ТЗ
1.
2.
Этапы построения модели
1. Определение переменных.
2. Проверка сбалансированности задачи.
3. Построение сбалансированной транспортной матрицы.
4. Задание ЦФ.
5. Задание ограничений.
Транспортная модель
| (7) |
Наглядной формой представления модели ТЗ является транспортная матрица (Таблица 27).
Таблица 27
Общий вид транспортной матрицы
Пунктыотправления, | Пункты потребления, | Запасы, [ед. прод.] | |||
| | … | | ||
| | | … | | |
| | | … | | |
… | … | … | … | … | … |
| | | … | | |
Потребность[ед. прод.] | | | … | | |
|
Поскольку ограничения модели (7) могут быть выполнены только при сбалансированной ТЗ, то при построении транспортной модели необходимо проверять условие баланса.
В случае, когда суммарные запасы превышают суммарные потребности, необходим дополнительный фиктивный пункт потребления, который будет формально потреблять существующий излишек запасов, то есть:
| (8) |
Если суммарные потребности превышают суммарные запасы, то необходим дополнительный фиктивный пункт отправления, формально восполняющий существующий недостаток продукции в пунктах отправления:
| (9) |
Введение фиктивного потребителя или отправителя повлечет необходимость формального задания фиктивных тарифов
| (10) |
На практике возможны ситуации, когда в определенных направлениях перевозки продукции невозможны, например, по причине ремонта транспортных магистралей. Такие ситуации моделируются с помощью введения так называемых запрещающих тарифов
| (11) |
Найдите решение транспортной задачи, суть которой заключается в оптимальной организации транспортных перевозок штучного товара со складов в магазины (Таблица 28).
Таблица 28
Исходные данные транспортной задачи (транспортная матрица)
Тарифы, руб./шт. | 1-й магазин | 2-й магазин | 3-й магазин | Запасы, шт. |
1-й склад | 2 | 9 | 7 | 25 |
2-й склад | 1 | 0 | 5 | 50 |
3-й склад | 5 | 4 | 100 | 35 |
4-й склад | 2 | 3 | 6 | 75 |
Потребности, шт. | 45 | 90 | 50 |
Построим математическую модель для данной транспортной задачи.