Виписуємо з таблиці вирази для тригерів (та виконуємо необхідні перетворення для представлення їх в рамках потрібної серії):
Формуємо функції виходів автомата:
Ми отримали усі необхідні вирази для принципової схеми. Будуємо її, користуючись формулами для тригерів та вихідними станами (Лист 1).
2.2 Автомат Мілі. Структурний синтез автомата Мілі
2.2.1. Розмітка станів ГСА
На етапі одержання відміченої ГСА входи вершин, які слідують за операторними, відмічають символами a1, a2, ... за наступними правилами:
1) символом а1 відмічають вхід вершини, яка слідує за початковою, а також вхід кінцевої вершини;
2) входи усіх вершин , які слідують за операторними, повинні бути відмічені;
3) входи різних вершин відмічаються різними символами;
4) якщо вхід вершини відмічається, то тільки одним символом.
За ціми правилами в мене вийшло 21 стани (а21).
2.2.2. Таблиця переходів автомата
Для кожного стану ai визначаю по ГСА всі шляхи, які ведуть в інші стани і проходять обов’язково тільки через одні операторну вершину. Виняток становить перехід в кінцевий стан (вершину).
Для мікропрограмних автоматів таблиці переходів-виходів будуються у вигляді списку, тому що велика кількість станів. Розрізняють пряму та зворотну таблицю переходів. Зворотна таблиця переходів будується для D-тригера. Для автомата Мілі я буду будувати зворотну таблицю переходів.
Кодування станів
Кодування станів буде проводитися за таким алгоритмом:
1. Кожному стану автомата аm (m = 1,2,...,M) ставиться у відповідність ціле число Nm, рівне числу переходів у стан аm (Nm дорівнює числу появ аm у поле таблиці ).
2. Числа N1, N2, ..., Nm упорядковуються по убуванні.
3. Стан аs з найбільшим Ns кодується кодом:
де R-кількість елементівпам'яті.4. Наступні R станів згідно списку пункту 2 кодуються кодами, що містять тільки одну 1:00 ... 01, 00 ... 10, ... , 01 ... 00, 10 ... 00.
5. Для станів, що залишилися, знову в порядку списку п.2. використовують коди з двома одиницями, потім із трьома і так далі поки не будуть закодовані вес стани.
У результаті виходить таке кодування, при якому чим більше мається переходів у деякий стан, тим менше одиниць у його коді. Вираження для функцій збдження будуть простіше для D-тригерів, тому що функції порушення однозначно визначаються кодом стану переходу.
Табл.3. Таблиця переходів D-тригера
Am | Kam | As | Kas | X | Y | ФЗ |
A19 | 11110 | A1 | 00011 | NX1 | D4D5 | |
A1 | 10110 | A2 | 00101 | 1 | Y5Y9 | D3 D5 |
A21 | 00001 | A3 | 00110 | 1 | Y1Y8 | D3D4 |
A3 | 00011 | A4 | 01010 | X4 | Y4 | D2 D4 |
A3A4A2 | 000110101000101 | A5 | 00000 | NX4NX31X4NX3 | Y3Y10Y4Y5Y3Y10 | |
A5 | 00010 | A6 | 01100 | 1 | Y1Y8 | D2D3 |
A6 | 00000 | A7 | 10001 | X4 | Y4 | D1 D5 |
A2A2A3 | 001100011000011 | A8 | 00001 | X4X3NX4NX1NX4X3 | Y6Y6Y6 | D5 D5 D5 |
A8 | 00111 | A9 | 10010 | 1 | Y5Y9 | D1 D4 |
A6A9A9 | 000000010100101 | A10 | 00010 | NX4X3X4X3NX4X1 | Y6Y6Y6 | D4 D4 D4 |
A18 | 01111 | A11 | 10100 | NX5X6 | Y3 | D1 D3 |
A10 | 00010 | A12 | 11000 | 1 | Y1Y8 | D1D2 |
A11 | 01011 | A13 | 00111 | 1 | Y5Y9 | D3D4D5 |
A12 | 01100 | A14 | 01011 | X4 | Y4 | D2 D4D5 |
A14A12A13 | 011100110001001 | A15 | 00100 | 1NX4NX3X4NX3 | Y4Y5Y3Y10Y3Y10 | D3D3D3 |
A12A13A13 | 011000100101001 | A16 | 10000 | NX4X3X4X3NX4X1 | Y6Y6Y6 | D1D1D1 |
A15 | 01000 | A17 | 01110 | 1 | Y2Y4 | D2D3D4 |
A16 | 01101 | A18 | 10011 | 1 | Y3Y6 | D1 D4 |
A17 | 11000 | A19 | 10101 | 1 | Y7 | D1 D3 D5 |
A19A18 | 1111001111 | A20 | 01001 | X1NX5NX6 | Y8Y8 | D2 D5 D2 D5 |
A7A6A9 | 100000000000101 | A21 | 01000 | 1NX3NX4NX4X3 | Y4Y5Y3Y10Y3Y10 | D2 D2 D2 |
Для підвищення функціональності схеми можна виділити однакові елементи:
Виписуємо з таблиці вирази для тригерів (та виконуємо необхідні перетворення для представлення їх в рамках потрібної серії):
Вихідні стани автомата Мілі:
Ми отримали усі необхідні вирази для принципової схеми. Будуємо її, користуючись формулами для тригерів та вихідними станами (Лист 2).
Заключення
В ході проекту ми отримали комбінаційну схему булевої функції в заданому базисі та побудували принципову схему керуючого автомата Мура.
Синтез автомата був виконаний з урахуванням серії КР1533, тому може бути зроблений та опробований в реальному житті. В цілому курсова робота довела свою важливість у закріпленні отриманих знань та набутті низки звичок щодо проектування цифрових автоматів.
Перелік використаної літератури
1. Методичні вказівки до курсової роботи по дисципліні “Прикладна теорія цифрових автоматів”. Одеса. ОГПУ. 1998р.
2. Мікросхеми серії 1533(555). Стислі теоретичні дані. Одеса. Центр
НТТМ ОГПУ. 1975г.
3. ГОСТ 2.708-81 ЄСКД. Правила виконання електричних схем цифрової обчи слювальної техніки.
4. ГОСТ 2.743-82. ЄСКД. Умовні графічні позначення в схемах. Елементи цифрової техніки.