Компьютер, снабженный техническими средствами мультимедиа, позволяет широко использовать дидактические возможности графики и звука. С помощью систем гипертекста можно создавать перекрестные ссылки в массивах текстовой информации, что облегчает поиск нужной информации по ключевым словам, выделенным в тексте. Системы гипермедиа позволяют связать друг с другом не только фрагменты текста, но и графику, оцифрованную речь, звукозаписи, фотографии, мультфильмы, видеоклипы и т.п.
Использование таких систем позволяет создавать и широко тиражировать на лазерных компакт-дисках "электронные" руководства, справочники, книги, энциклопедии.
Развитие информационных телекоммуникационных сетей дает новый импульс системам дистанционного обучения, обеспечивает доступ к гигантским объемам информации, хранящимся в различных уголках нашей планеты.
Новые аппаратные и программные средства, наращивающие возможности компьютера, переход в разряд анахронизма понимания его роли как вычислителя постепенно привели к вытеснению термина "компьютерные технологии" термином "информационные технологии". Под этим термином понимают процессы накопления, обработки, представления и использования информации с помощью электронных средств. Так, суть информатизации образования определяют как создание условий учащимся для свободного доступа к большим объемам активной информации в базах данных, базах знаний, электронных архивах, справочниках, энциклопедиях.
Следуя этой терминологии, можно определить информационные технологии обучения (ИТО) как совокупность электронных средств и способов их функционирования, используемых для реализации обучающей деятельности. В состав электронных средств входят аппаратные, программные и информационные компоненты, способы применения которых указываются в методическом обеспечении ИТО.
Впечатляющий прогресс в развитии аппаратных и инструментальных программных средств ИТО предоставляет хорошие технические возможности для реализации различных дидактических идей. Однако, как показывает анализ отечественных и зарубежных компьютерных систем учебного назначения, ряд из них по своим дидактическим характеристикам нельзя назвать даже удовлетворительными. Дело в том, что уровень качества "мягкого" продукта учебного назначения закладывается на этапе его проектирования при подготовке учебного материала для наполнения баз данных АОС и электронных учебников, при создании сценариев учебной работы с компьютерными системами моделирующего типа, при разработке задач и упражнений и т.п.
К сожалению, методические аспекты ИТО отстают от развития технических средств. Да это и неудивительно, поскольку в методическом плане ИТО интегрируют знания таких разнородных наук, как психология, педагогика, математика, кибернетика, информатика. Разработка средств ИТО для поддержки профессионального образования осложняется еще и необходимостью хорошо знать содержание предметной области и учитывать присущую ей специфику обучения. Именно отставание в разработке методологических проблем, "нетехнологичность" имеющихся методик являются одними из основных причин разрыва между потенциальными и реальными возможностями ИТО.
Теперь рассмотрим некоторые примеры информационных систем обучения и попытаемся выяснить наиболее актуальные технологии построения ИСО на сегодняшний день.
Сначала рассмотрим методические аспекты технологии создания "мягкого" продукта учебного назначения, положенные в основу системы Комплексов Автоматизированных ДИдактических Средств (системы КАДИС), разработанной и развиваемой в центре новых информационных технологий при Самарском государственном аэрокосмическом университете (СГАУ).
В комплексе обобщаются опыт и результаты многолетних исследований по компьютерной поддержке инженерной подготовки. Эти исследования были начаты в конце 70-х гг. на кафедре конструкции и проектирования летательных аппаратов СГАУ.
Одна из первых версий инструментальной среды получила название системы автоматизированного проектирования автоматизированных учебных курсов (САПР АУК). В дальнейшем, несмотря на расширение ее функций от разработки АУК до подготовки целостных комплексов, включающих набор АУК, тренажеров, учебных ППП, это название было сохранено.
В состав САПР АУК входят следующие компоненты: учебное пособие, АУК для освоения и закрепления методики проектирования учебных комплексов, программные средства, информационное обеспечение.
Информационное обеспечение САПР АУК включает базы данных двух типов: базы данных с учебным материалом и журнал. Учебный материал содержит для каждого АУК блоки информации, упражнения, словарь терминов и понятий с их синонимами и определениями, условия вызова подключаемых программ (тренажеров, учебных ППП и т.п.). В журнале накапливается статистика по работе учащихся со всеми АУК.
Программные средства САПР АУК реализуют четыре вида интерфейсов: учащихся, преподавателей–пользователей и преподавателей–разработчиков учебных комплексов, администратора САПР АУК. Структурно все программы также можно разделить на четыре основные части: "проигрыватель" учебных комплексов, обеспечивающий работу учащихся и преподавателей-пользователей; инструментальную оболочку, позволяющую преподавателям-разработчикам наполнять базу данных учебных комплексов; набор программных утилит, реализующих некоторые дополнительные функции в работе преподавателей–разработчиков; утилиты администратора САПР АУК.
Томский Государственный университет является разработчиком очень многих интересных систем обучения. В том числе одна из достаточно интересных и простых разработок – Виртуальный университет. Первые версии информационной системы обучения являлись «локальными» и похожими на нашу систему.
На сегодняшний день наиболее востребованными и эффективными информационными системами обучения являются “сетевые” системы управления обучением (LMS) и системы управления содержимым обучения (LCMS).
Вслед за развитием систем управления сайтом (CMS – Content Management System), стали появляться специализированные системы, в частности для управления обучением.
В англоязычной литературе можно встретить следующую аббревиатуру систем управления обучением:
· LMS – Learning Management System (системауправленияобучением);
· CMS – Course Management System (системауправлениякурсами);
· LCMS – Learning Content Management System (системауправленияучебнымматериалом);
· MLE – Managed Learning Environment (оболочка для управления обучением);
· LSS – Learning Support System (система поддержки обучения);
· LP – Learning Platform (образовательная платформа);
· VLE – Virtual Learning Environments (виртуальныесредыобучения).
Основным фундаментом электронного обучения обычно являются системы LMS и LCMS. LMS предполагает автоматизацию административного управления учебным процессом, а LCMS – автоматизацию управления содержимым (контентом) учебного процесса, хотя на практике границы между этими системами весьма относительны.
Обе системы управляют содержанием курсов и отслеживают результаты обучения. Оба инструмента могут управлять и отслеживать контент, вплоть до уровня учебных объектов. Но система управления обучением, в то же время, может управлять процессом смешанного обучения, составленного из онлайнового контента, мероприятий в учебных классах, встреч в виртуальных учебных классах и т.п. В противовес этому, система управления учебным контентом может руководить содержимым на уровень ниже учебного объекта, что позволяет перестраивать и перенаправлять онлайн-контент. Некоторые LCMS умеют динамически строить учебные объекты в соответствии с профилями пользователей или стилями обучения.
Таким образом, система управления обучением обеспечивает инфраструктуру, позволяющую любому образовательному учреждению планировать, проводить и управлять учебными программами любых форматов на выбор. Она также поддерживает многочисленные средства разработки курсов и легко интегрируется с популярными системами управления содержимым обучения. В этой роли, как катализатор общей учебной среды, LMS может интегрировать в LCMS учебные объекты через технические спецификации и стандарты, а также нести ответственность за управление учебным контентом, включая проигрывание и проверки, хранение контент–репозитория, соединение и разъединение объектов контента, внедрение объектов контента в смешанные процессы, сбор результатов обучения по отдельным курсам.
В недавнем прошлом все электронные обучающие ресурсы создавались с использованием специфичных инструментальных средств, требующих свою среду разработки и функционирования. Разработчики курсов или должны были изучить эти инструментальные средства, или работать с программистами, имеющими опыт работы с ними. Содержимое разрабатывалось заново от курса к курсу и требовалось много сил на разработку и испытания курса.
Learning Content Management System отделяет контент от средств доставки контента. Содержимое может быть создано однократно и доставлено многочисленными способами. LCMS также устраняет потребность в специализированных навыках программирования, поскольку позволяет авторам вставлять содержание в предварительно запрограммированные шаблоны. Поскольку контент создается в виде небольших объектов, разработчики могут повторно использовать содержимое, созданное другими авторами, экономя при этом время на разработку, а также обеспечивая доставку непротиворечивой информации обучающимся.