Функция имеет вид МОБР(массив).
Здесь массив – это числовой массив с равным количеством строк и столбцов. Массив может быть задан как диапазон ячеек, например А1:С3; как массив констант, например, {1;2;3;4;5;6;7;8;9} или как имя диапазона или массива.
Рассмотрим пример нахождения обратной матрицы.
Пример 1.3. Пусть в диапазон ячеек А1:С3 введена матрицаНеобходимо получить обратную матрицу.
Решение
1. Выделите блок ячеек под обратную матрицу, например блок ячеек А5:С7 (указателем мыши при нажатой левой кнопке).
2. Нажмите на панели инструментов Стандартная кнопку Вставка функции. В появившемся диалоговом окне Мастер функций в рабочем поле Категория выберите Математические, а в рабочем поле Функция – имя функции МОБР. После этого щелкните на кнопке ОК.
3. Появившееся диалоговое окно МОПРЕД мышью отодвиньте от исходной матрицы и введите диапазон исходной матрицы А1:С3 в рабочее поле Массив (указателем мыши при нажатой левой кнопке).
4. Нажмите сочетание клавиш CTRL+SHIFT+ENTER (рис. 1.4).
Рис. 1.4.Пример заполнения диалогового окна МОБР
5. Если обратная матрица не появилась в диапазоне А5:С7, то следует щелкнуть указателем мыши в строке формул и повторить нажатие CTRL+SHIFT+ENTER.
В результате в диапазоне А5:С7 появится обратная матрица:
Сложение и вычитание матриц
Складывать (вычитать) можно матрицы одного размера. Суммой матриц А = (aij) и В = (bij) размера m×n называется матрица C = A + B, элементы которой cij = aij + bijдля i = 1,2, …, m; j = 1,2, …, n (то есть матрица складывается поэлементно). Например, если:
то С = А + В:
В частном случае А + 0 = А.
Аналогично определяют разность двух матриц С = А – В.
В MSExcel для выполнения операций суммирования и вычитания матриц могут быть использованы формулы, вводимые в соответствующие ячейки.
Пример 1.4. Пусть матрица А из рассмотренного примера, введена в диапазон А1:С2, а матрица В – в диапазон А4:С5. Необходимо найти матрицу С, являющуюся их суммой.
Решение.
1. Табличный курсор установите в левый верхний угол результирующей матрицы, например в А7.
2. Введите формулу для вычисления первого элемента результирующей матрицы = А1 + А4
3. Скопируйте введённую формулу в остальные ячейки результирующей матрицы: установите табличный курсор в ячейку А7; наведите указатель мыши на точку в правом нижнем углу ячейки так, чтобы указатель принял вид тонкого крестика; при нажатой левой кнопке мыши протяните указатель до ячейки С7; затем так же протяните указатель мыши до ячейки С8.
В результате в ячейках А7:С8 появится матрица, равная сумме исходных матриц. Подобным образом вычисляется разность матриц, только в формуле для вычисления первого элемента вместо знака «+» ставят знак «-».Умножение матрицы на число
Произведением матрицы А на число k называется матрица В = kA, элементы которой bij = kaijдля I = 1,2, …, m; j = 1,2, …, n. Иначе говоря, при умножении матрицы на постоянную каждый элемент этой матрицы умножается на эту постоянную: k*Aij = (k*aij).
Например, для матриц А и В из предыдущего примера:В частности, произведение матрицы А на число 0 есть нулевая матрица, то есть 0 × А = 0.
В MSExcel для выполнения операции умножения матрицы на число могут быть использованы формулы, вводимые в соответствующие ячейки.
Пример 1.5. Пусть, как и в предыдущем примере матрица А введена в диапазон А1:С2. Необходимо получить матрицу С = 3 × А.
Решение
1. Табличный курсор поставить в левый верхний угол результирующей матрицы, например в Е1.
2. Введите формулу для вычисления первого элемента результирующей матрицы = 3*А1.
3. Скопируйте введённую формулу в остальные ячейки результирующей матрицы: установите табличный курсор в ячейку Е1; наведите указатель мыши на точку в правом нижнем углу ячейки так, чтобы указатель принял вид тонкого крестика; при нажатой левой кнопке мыши протяните указатель до ячейки G1; затем так же протяните указатель мыши до ячейки G2.
В результате в ячейках E1:G2 появится матрица, равная исходной матрице, умноженной на постоянную – 3.
Умножение матриц
Произведение матриц определено, если число столбцов первой матрицы равно числу строк второй.
Пусть А = (aij) m×n, B = (bij) n×p, тогда размерность произведения А×В равна m×p. При этом матрица С называется произведением матриц А и В, если каждый её элемент cij равен сумме произведений элементов i-й строки матрицы А на соответствующие элементы j-го столбца матрицы В:
Таким образом, перемножение матриц осуществляется по следующему правилу:Пусть, например,
Многие свойства, присущие операциям над числами, справедливы и для операций умножения матриц.Для матриц верны общие свойства операции умножения.
1. А(ВС) = (АВ)С – ассоциативность.
2. А(В+С) = АВ + АС – дистрибутивность.
3. (А + В)С + АС + ВС.
4. (αА)В = А(αВ) = α(АВ), α – константа.
Однако имеются и специфические свойства операций умножения матриц.
5. Умножение матриц некоммутативно – АВ ≠ ВА.
В частном случае коммутативным законом обладает произведение любой квадратной матрицы А n-го порядка на единичную матрицу Е того же порядка, причем это произведение равно А.
6. Если Е – единичная матрица, то ЕА = А; ЕВ = В.
Таким образом, единичная матрица играет при умножении ту же роль, что и число 1 при умножении чисел.
7. Из того, что А × В = 0, не следует, что А = 0 или В = 0.
В алгебре матриц нет действия деления. Выражение А/В не имеет смысла. Его заменяют два различных выражения В-1 × А и А × В-1, если существует В-1.
Для квадратных матриц возможна операция возведения в степень. По определении. полагают, что А0 = Е и А1 = А. Целой положительной степенью Am(m>1) квадратной матрицей А называется произведение m матриц, равных А, то есть:Для нахождения произведения двух матриц в Excel используется функция МУМНОЖ, которая вычисляет произведение матриц.
Функция имеет вид МУМНОЖ(массив1;массив2).
Здесь массив1 и массив2 – это перемножаемые массивы. При этом количество столбцов аргумента массив1 должно быть таким же, как количество строк аргумента массив2, и оба массива должны содержать только числа. Результатом является массив с таким же числом строк, как массив1 и с таким же числом столбцов, как массив2.
Массив С, который является произведением двух массивов А и В, определяется следующим образом:
где I – номер строки, а j – номер столбца.
Рассмотрим пример умножения матриц.
Пример 1.6. Пусть матрица А из примера 1.2 введена в диапазон А1:D3, а матрица В – в диапазон А4:В7. Необходимо найти произведение этих матриц С.
Решение
1. Выделите блок ячеек под результирующую матрицу. Для этого требуется найти размер матрицы-произведения. Её размером будет mp, в данном примере 32. Например, выделите блок ячеек F1:G3.
2. Нажмите на панели инструментов Стандартная кнопку Вставка функции.
3. В появившемся диалоговом окне Мастер функций в рабочем поле Категория выберите Математические, а в рабочем поле Функция – имя функции МУМНОЖ. После этого щелкните на кнопке ОК.
4. Появившееся диалоговое окно МУМНОЖ мышью отодвиньте от исходной матрицы и введите диапазон исходной матрицы А - А1:D3 в рабочее поле Массив1 (указателем мыши при нажатой левой кнопке), а диапазон матрицы В – А4:В7 введите в рабочее поле Массив2 (рис. 1.5). Нажмите сочетание клавиш CTRL+SHIFT+ENTER.Рис. 1.5.Пример заполнения рабочих полей диалогового окна МУМНОЖ
5. Если произведение матриц А×В не появилось в диапазоне F1:G3, то следует щёлкнуть указателем мыши в строке формул и ещё раз нажать комбинацию клавиш CTRL+SHIFT+ENTER.
В результате в диапазоне F1:G3 появится произведение матриц:
Список литературы:
1. www.office.microsoft.com
2. В. Я. Гельман «Решение математических задач средствами Excel», стр. 49-60