Частота колебания обратна периоду: ν = 1/T. Также говорят о круговой частоте, которая вычисляется по формуле: ω= 2πν = 2πT. Откуда: x = A sin(ωt).
И, наконец, есть фаза, обозначаемая как φ. Она определяет сдвиг графика колебания влево. В результате сочетания всех этих параметров получается гармоническое колебание или просто гармоника:
Очень похоже выглядит и выражение гармоники через косинус:
Большой разницы нет. Достаточно изменить фазу на π/2, чтобы перейти от синуса к косинусу и обратно. Далее будем подразумевать под гармоникой функцию косинуса:
x = A cos(2πt/T + φ) = A cos(2πνt + φ) = A cos(ωt + φ) (18)
В природе и технике колебания, описываемые подобной функцией чрезвычайно распространены. Например, маятник, струна, водные и звуковые волны и прочее, и прочее.
Преобразуем (18) по формуле косинуса суммы:
x = A cos φ cos(2πt/T) - A sin φ sin(2πt/T) (19)
Выделим в (19) элементы, независимые от t, и обозначим их как Re и Im:
x = Re cos(2πt/T) - Im sin(2πt / T) (20)
Re = A cos φ, Im = A sin φ
По величинам Re и Im можно однозначно восстановить амплитуду и фазу исходной гармоники:
и (21)Рассмотрим очень распространенную практическую ситуацию. Пусть у нас есть звуковое или какое-то иное колебание в виде функции x = f(t). Пусть это колебание было записано в виде графика для отрезка времени [0, T]. Для обработки компьютером нужно выполнить дискретизацию. Отрезок делится на N-1 равных частей, границы частей обозначим tn = nT/N. Сохраняются N значений функции на границах частей: xn = f(tn) = { x0, x1, x2,..., xN }.
В результате прямого дискретного преобразования Фурье были получены N значений для Xk:
(22)Теперь возьмем обратное преобразование Фурье:
(23)Выполним над этой формулой следующие действия: разложим каждое комплексное Xk на мнимую и действительную составляющие Xk = Rek + j Imk; разложим экспоненту по формуле Эйлера на синус и косинус действительного аргумента; перемножим; внесем 1/N под знак суммы и перегруппируем элементы в две суммы:
(24)Это была цепочка равенств, которая начиналась с действительного числа xn. В конце получилось две суммы, одна из которых помножена на мнимую единицу j. Сами же суммы состоят из действительных слагаемых. Отсюда следует, что вторая сумма должна быть равна нулю. Отбросим ее и получим:
(25)Поскольку при дискретизации мы брали tn = nT/N и , то можем выполнить замену: n = tnN/T. Следовательно, в синусе и косинусе вместо 2πkn/N можно написать 2πktn/T. В результате получим:
(26)Сопоставим эту формулу с формулой (20) для гармоники:
x = Re cos(2πt/T) - Im sin(2πt / T) (20)
Слагаемые суммы (26) аналогичны формуле (20), а формула (20) описывает гармоническое колебание. Значит сумма (26) представляет собой сумму из N гармонических колебаний разной частоты, фазы и амплитуды.
Выше объяснялось, каким образом формула вида (20) может быть преобразована в формулу вида (18):
x = A cos(2πt/T + φ) (18)
Выполним такое же преобразование для слагаемых суммы (26), преобразуем их из вида (20) в вид (18). Получим:
(27)Далее будем функцию
Gk(t) = Ak cos(2πtk/T + φk) (28)
называть k-й гармоникой.
Для вычисления Ak и φk надо использовать формулу (21). Теперь выпишем в одном месте все формулы, которые связывают амплитуду, фазу, частоту и период каждой из гармоник с коэффициентами Xk:
(29)Итак.
Физический смысл дискретного преобразования Фурье состоит в том, чтобы представить некоторый дискретный сигнал в виде суммы гармоник. Параметры каждой гармоники вычисляются прямым преобразованием, а сумма гармоник - обратным.
Предположим, что исходный сигнал состоял из суммы гармоник. fs(t) = As cos(2πtms / T + φs). Пусть мы этот сигнал подвергли дискретизации, выполнили над ним прямое и обратное преобразование Фурье. Представили в виде суммы гармоник Gk(t) = Ak cos(2πtk / T + φk), как это описано в предыдущей главе. Спрашивается, эти гармоники Gk - те же самые, что и исходные гармоники fs или нет? Оказывается, нет, не те. Но кое-какую информацию об исходных гармониках все же можно попытаться восстановить.
Эта задача имеет практический интерес. Пусть нам дан некий сигнал, который физически получился как сумма гармонических колебаний (или близких к ним). Простейший пример: кто-то сыграл аккорд, аккорд записан как звуковое колебание в виде mp3 или wav-файла; и надо восстановить, из каких нот аккорд состоял. Или другой случай. Во время испытаний самолета возик флаттер (разрушительные нарастающие колебания), самолет разбился, но самописцы в черном ящике записали изменение перегрузки (суммарное механическое колебание). Надо посмотреть, из каких гармоник состояло это колебание. Каждой гармонике соответствует некоторая часть конструкции. В результате можно понять, какие части самолета колебались сильнее всего и вызвали флаттер.
Вернемся к предыдущей ситуации.
Дана функция f(t) на отрезке [0, T].
Выполнена ее дискретизация, для чего отрезок разбит на N равных частей в точках tn = Tn/N и вычислены значения функции в этих точках: {x} : xn = f(tn) = f(Tn/N).
Пусть выполнено прямое дискретное преобразование Фурье (далее - ДПФ) {X} : Xk = NAke jφk, и функция разложена на сумму из N гармоник:
Gk(t) = Ak cos(2πtk / T + φk)
Теперь предположим, что наша исходная функция сама представляла собой такую гармонику:
f(t) = A cos(2πtm / T + φ).
Получится ли в результате ее преобразования последовательность {X}, в которой все элементы равны нулю, кроме элемента Xm = NAme jφm, который дает как раз эту гармонику?
Gm(t) = Am cos(2πtm / T + φm) = f(t), Am = A, φm = φ
Как уже говорилось, нет, нас ждет разочарование. Вместо этой одной гармоники мы получим две:
Gm(t) = (A/2) cos(2πtm / T + φ) = f(t) / 2 = f'(t)
и
GN-m(t) = (A/2) cos(2πt(N - m) / T - φ) = f''(t)
Как видите у них половинные амплитуды, противоположные фазы, а частоты зеркально симметрично расположены на отрезке [0, N]. Это - тот самый зеркальный эффект.
Преобразуем сумму этих гармоник по формуле суммы косинусов:
Итого:
f'(t) + f''(t) = A cos(πtN / T) cos(2πtm / T - πtN / T + φ) (30)
А нам требовалось:
f(t) = A cos(2πtm / T + φ) (31)
Однако, формулы (30) и (31) дают один и тот же результат в точках tn = Tn / N. В самом деле, подставим Tn / N вместо t сначала в (30):
f'(t) + f''(t) =
= A cos(πTnN / TN) cos(2πTnm / TN - πTnN / TN + φ) =
= A cos(πn) cos(2πnm / N - πn + φ) = ...
Второй множитель разложим по формуле косинуса разности, отделив πn:
... = A cos(πn) [cos(2πnm / N + φ) cos(πn) +
+ sin(2πnm / N + φ) sin(πn)] = ...
Учитывая, что для целого n выполняется sin(πn) = 0 и cos2(πn) = 1, получаем:
... = A cos(πn) [cos(2πnm / N + φ) cos(πn)] =
= A cos2(πn) cos(2πnm / N + φ) = A cos(2πnm / N + φ) (32)
Теперь подставим Tn / N вместо t в (31):
f(t) = A cos(2πtm / T + φ) = A cos(2πTnm / TN + φ) =
= A cos(2πnm / N + φ) (33)
Формулы (32) и (33) совпадают, что и требовалось доказать.
Из этого примера следует важный вывод. Заданная дискретная последовательность {x} может быть разложена в общем случае на разные суммы гармоник Gk(t). Даже в элементарном случае, когда исходная функция представляла собой одну гармонику, в результате можно получить две. То есть, разложение дискретной последовательности на гармоники неоднозначно.
Этим эффектом мы обязаны именно дискретизации. Дело в том, что если вместо ДПФ использовать его непрерывный аналог - разложение в ряд Фурье непрерывной функции или непрерывное преобразование Фурье f(t), то мы получим единственую правильную гармонику Gm(t) = A cos(2πtm / T + φ) = f(t). Если же мы применяем ДПФ, то получим сумму гармоник, которая только в точках дискретизации совпадает с исходной функцией:
На этом графике для N = 8 и m = 2 синим цветом показана исходная гармоника f(t) и две гармоники, которые получаются в результате преобразвания Фурье: f'(t) зеленым цветом и f''(t) красным. В точках дискретизации, отмеченных вертикальными штрихами, сумма гармоник f'(t) и f''(t) совпадает с гармоникой f(t).
Заметим также, что тот же результат преобразования получился бы, если бы мы в качестве исходной функции f(t) взяли 2f''(t) или f'(t) + f''(t). Это следует из того, что в результате дискретизации была бы получена та же последовательность {x} и результаты ДПФ, естественно, дали бы то же самое.
Итак, мы имеем правило:
Разложение на гармоники, когда исходные данные представлены дискретным набором точек {x} является принципиально неоднозначным. Функции
f(t) = A cos(2πtm / T + φ),
2f''(t) = A cos(2πt(N-m) / T - φ) и
f'(t) + f''(t) = (A/2) cos(2πtm / T + φ) + (A/2) cos(2πt(N-m) / T - φ)
дают после дискретизации одни и те же исходные данные и те же результаты ДПФ.