3.6 Розробка функції обчислення порогового значення відрізку масиву яскравостей зображення
3.8 Розробка функції ентропійного кодування зображення
3.9 Опис використаних компонентів
5.3 Оцінка конкурентноздатності
5.4.1 Оцінка витрат на розробку продукту
5.5 Оцінка ризику і страхування
6. Охорона праці і навколишнього середовища
6.1 Основні питання охорони праці
6.2.4 Випромінювання від екрана
6.3 Техніка безпеки на робочому місці
6.3.2 Ергономічні вимоги до робочого місця
6.5 Охорона навколишнього середовища
На сьогоднішній день актуальна проблема зберігання й передачі інформації в цифровому виді. Для одержання компактних інформаційних подань застосовуються технології ощадливого кодування. Використання цих технологій дозволяє істотно знизити вимоги, пропоновані до обсягу інформаційних носіїв, а також відчутно збільшує швидкість передачі інформації з каналів зв'язку.
Передача інформації є основною областю застосування ощадливого кодування. На даний момент першочергове завдання - організація ефективного телевізійного й мультимедійного віщання. Як відомо, відеоінформація являє собою найбільш об'ємний тип інформації. З обліком обмеженої пропускної здатності цифрових каналів, щоб гарантувати високу якість передачі зображень, необхідно забезпечити їх досить ефективне подання (якість передачі прямо залежить від обсягу інформації, переданого в одиницю часу). Як наслідок, протягом уже більше 15 років значні зусилля направляються на розробку технологій ефективного подання зображень. Цій проблемі присвячена й дана дипломна робота.
Основна мета роботи - аналіз існуючих технологій одержання компактних подань відеоінформації з погляду способу організації кодування й пошук можливих шляхів підвищення їхньої ефективності.
Вибір напрямку дослідження заснований на результатах порівняльного аналізу існуючих алгоритмів ощадливого кодування. Алгоритм ощадливого кодування являє собою певний спосіб генерації ощадливого коду на основі наближеної моделі породження кодуємої інформації. З метою зниження обчислювальної складності на практиці довгий час застосовувалися спрощені методи інформаційного моделювання й генерації коду. Як моделі бралися найпростіші комбінаторні моделі, а генерація коду здійснювалася з використанням найбільш швидких реалізацій префіксного кодування. У цей час постановка завдання змінилася: на перший план стала всі частіше виходити ефективність кодування. Сьогодні стає доцільним застосування більше складних технологій кодування, які дозволяють досягти максимально компактного інформаційного подання.
Одним з найбільш ефективних методів інформаційного моделювання є імовірнісне контекстно-залежне моделювання. При використанні даного методу вибір інформаційної моделі в кожен момент часу здійснюється на основі значення деякого контексту, що формується з елементів уже обробленої інформаційної вибірки. Уводячи контексти, ми фактично вирішуємо завдання ідентифікації станів інформаційного джерела. Для кожної моделі зберігається статистична інформація про появу різних символів інформаційного алфавіту в контексті, що відповідає даної моделі. На основі цієї інформації формується розподіл імовірнісних оцінок появи символів на виході джерела, що є основою для генерації коду.
Арифметичне кодування являє собою найбільш ефективний метод генерації коду по заданому імовірнісному розподілі. Використання цього методу дозволяє одержувати коди, довжини яких мало відрізняються від теоретично оптимальних значень.
Таким чином, сполучення контекстно-залежного імовірнісного моделювання й арифметичного кодування найбільше вигідно з погляду ефективності. При цьому найбільш ефективним буде кодування інформації на основі аналізу її ентропійності - завдяки такому підходу, ми зможемо гарантувати зменшення обсягу відеоінформації, за умови зберігання достатнього рівня інформаційності, тобто зображення залишається досить чітким, але кількість кольорів зображення зменшується, при цьому чоловіче око може аналізувати цю інформацію на рівні із попередньою.
Тому в дипломній роботі приділимо увагу до кодування найпростішого виду відеоінформації - чорно-білого зображення, що дає можливість отримати основи алгоритмів для кодування більш складних видів зображень, як кольорові картинки та відео файли.
Теорія ощадливого кодування займається проблемою створення ефективних подань інформаційної вибірки. Мова в більшості випадків іде про вибірку джерел дискретної інформації з кінцевим алфавітом. Ефективне кодування стає можливим завдяки наявності в інформації певних особливостей, тому однієї з найбільш важливих задач є одержання як можна більше точного опису властивостей інформаційних джерел.
Існує кілька підходів до такого роду опису. Найбільше часто використовувані - комбінаторний й імовірнісний.
У рамках комбінаторного підходу символи розглядаються не обособлено, а групами, іменованими інформаційними повідомленнями. Покладається, що з виходу джерела інформації можуть надходити не всі можливі повідомлення, а тільки повідомлення з деякого виділеної множини. При цьому повідомлення, що належати даній множині, уважаються зовсім рівнозначними, тобто їхня поява покладається рівноймовірним. Конкретний вибір множини припустимих повідомлень виконує роль інформаційного опису.
Комбінаторний підхід одержавши досить широке поширення на практиці. Основним його достоїнством є простота опису інформаційних особливостей, тому практичні реалізації методів ощадливого кодування, в основі яких лежить даний підхід, мають низьку обчислювальну складність.
Недолік полягає в тім, що точність опису годиною прямо залежить потужності множини припустимих повідомлень - для одержання досить точного опису може знадобитися розглянути дуже велика кількість повідомлень. Комбінаторний підхід також не дозволяє одержувати інформаційні характеристики для окремих символів усередині повідомлення.
Суть імовірнісного підходу полягає у використанні імовірнісних оцінок фактів появи різних символів на виході джерела інформації. У порівнянні з комбінаторним підходом імовірнісний підхід є більше точним способом опису властивостей інформаційних джерел. У тієї ж година імовірнісний підхід менш вигідний з обчислювальної крапки зору, тому що його застосування сполучене з обчисленням складних імовірнісних оцінок. Таким чином, з одному боку, імовірнісний опис, як правило, більш ефективно в порівнянні з комбінаторним описом, з іншого боку, імовірнісний опис не завжди можна використати на практиці через існуючі обчислювальні обмеження. Постійне збільшення продуктивності обчислювальних систем робить останній фактор менш значимим, внаслідок чого імовірнісний підхід останнім годиною всі частіше й частіше береться за основу при розробці алгоритмів ощадливого кодування.
Основоположником імовірнісного підходу є Шеннон. Він запропонував ввести характеристику невизначеності інформації H (p1; p2; …; pN), що залежить від імовірностей p1; p2; …; pN появи символів алфавіту A потужності N на виході інформаційного джерела. Шеннон зажадав, щоб міра невизначеності, за аналогією з аналогічною фізичною характеристикою названа їм ентропією, мала наступні властивості:
величина H (p1,p2,...,pn) інваріантна щодо перестановок аргументів p1,p2,...,pn;
функція H (p1,p2,...,pn) безперервна по шкірному з аргументів своїх аргументів p1,p2,…,pn]
функція A (N) = H (1/N,…1/N) з кількістю елементів 1/N=N, монотонно зростає по N
виконується співвідношення: H (p1; p2; …; pk; pk+1; …; pk+l) = H (p1; p2; …; pk; ps) + psH (pk+1/ ps,…, pk+l/ps), де ps = сума від 1 до l (pk+1).
Як показав Шеннон, функція, що задовольняє зазначеним властивостям, має вигляд H (p1; p2; …; pN) = - K∑pi logm pi, де K та m - деякі позитивні константи. Для зручності пропонується вибирати K рівним одиниці, а в якості m брати основу системи подання інформації. Як показує практика, такий вибір багато в чому виправданий. Наприклад, у системі подання інформації з підставою 2 невизначеність появи одного із двох символів, що з'являються з рівною ймовірністю, виявляється рівної 1 біту. Це добрі погодиться з визначенням біта як одиниці інформації, необхідної для подання вибору одного із двох равновероятных подій. Таким чином, підсумкова формула для обчислення ентропії інформаційного джерела з імовірнісним розподілом появи символів {pi}Ni=1виглядає в такий спосіб: