Смекни!
smekni.com

Распределенные баз данных и распределенных СУБД (стр. 2 из 8)

Независимость от оборудования. Это свойство означает, что в качестве узлов распределенной системы могут выступать компьютеры любых моделей и производителей - от мэйнфреймов до "персоналок".

Независимость от операционных систем. Это качество вытекает из предыдущего и означает многообразие операционных систем, управляющих узлами распределенной системы.

Прозрачность сети. Доступ к любым базам данных осуществляется по сети. Спектр поддерживаемых конкретной СУБД сетевых протоколов не должен быть ограничением системы с распределенными базами данных. Данное качество формулируется максимально широко - в распределенной системе возможны любые сетевые протоколы.

Независимость от баз данных. Это качество означает, что в распределенной системе могут мирно сосуществовать СУБД различных производителей, и возможны операции поиска и обновления в базах данных различных моделей и форматов.

Исходя из определения Дэйта, можно рассматривать DDB как слабосвязанную сетевую структуру, узлы которой представляют собой локальные базы данных. Локальные базы данных автономны, независимы и самоопределены; доступ к ним обеспечиваются СУБД, в общем случае от различных поставщиков. Связи между узлами - это потоки тиражируемых данных. Топология DDB варьируется в широком диапазоне - возможны варианты иерархии, структур типа «звезда» и т.д. В целом топология DDB определяется географией информационной системы и направленностью потоков тиражирования данных [4].

1.3 Целостность данных

В DDB поддержка целостности и согласованности данных, ввиду свойств 1-2, представляет собой сложную проблему. Ее решение - синхронное и согласованное изменение данных в нескольких локальных базах данных, составляющих DDB - достигается применением протокола двухфазной фиксации транзакций. Если DDB однородна - то есть на всех узлах данные хранятся в формате одной базы и на всех узлах функционирует одна и та же СУБД, то используется механизм двухфазной фиксации транзакций данной СУБД. В случае же неоднородности DDB для обеспечения согласованных изменений в нескольких базах данных используют менеджеры распределенных транзакций. Это, однако, возможно, если участники обработки распределенной транзакции - СУБД, функционирующие на узлах системы, поддерживают XA-интерфейс, определенный в спецификации DTP консорциума X/Open. В настоящее время XA-интерфейс имеют СУБД CA-OpenIngres, Informix, Microsoft SQL Server, Oracle, Sybase.

Если в DDB предусмотрено тиражирование данных, то это сразу предъявляет дополнительные жесткие требования к дисциплине поддержки целостности данных на узлах, куда направлены потоки тиражируемых данных. Проблема в том, что изменения в данных инициируются как локально - на данном узле - так и извне, посредством тиражирования. Неизбежно возникают конфликты по изменениям, которые необходимо отслеживать и разрешать [4].

Обработка распределенных запросов. Обработка распределенных запросов (Distributed Query -DQ) - задача, более сложная, нежели обработка локальных и она требует решения с помощью особого компонента - оптимизатора DQ. Обратимся к базе данных, распределенной по двум узлам сети. Таблица detail хранится на одном узле, таблица supplier - на другом. Размер первой таблицы - 10000 строк, размер второй - 100 строк (множество деталей поставляется небольшим числом поставщиков). Результирующая таблица представляет собой объединение таблиц detail и supplier. Данный запрос - распределенный, так как затрагивает таблицы, принадлежащие различным локальным базам данных. Для его нормального выполнения необходимо иметь обе исходные таблицы на одном узле. Следовательно, одна из таблиц должна быть передана по сети. Очевидно, что это должна быть таблица меньшего размера, то есть таблица supplier. Следовательно, оптимизатор DQ запросов должен учитывать такие параметры, как, в первую очередь, размер таблиц, статистику распределения данных по узлам, объем данных, передаваемых между узлами, скорость коммуникационных линий, структуры хранения данных, соотношение производительности процессоров на разных узлах и т.д. От интеллекта оптимизатора DQ впрямую зависит скорость выполнения распределенных запросов.

Межоперабельность. В контексте DDB межоперабельность означает две вещи.

Во-первых, - это качество, позволяющее обмениваться данными между базами данных различных поставщиков.

Во-вторых, это возможность некоторого унифицированного доступа к данным в DDB из приложения. Возможны как универсальные решения (стандарт ODBC), так и специализированные подходы. Очевидный недостаток ODBC - недоступность для приложения многих механизмов каждой конкретной СУБД, поскольку они могут быть использованы в большинстве случаев только через расширения SQL в диалекте языка данной СУБД, но в стандарте ODBC эти расширения не поддерживаются.
Специальные подходы - это, например, использование шлюзов, позволяющее приложениям оперировать над базами данных в "чужом" формате так, как будто это собственные базы данных. Вообще, цель шлюза - организация доступа к унаследованным (legacy) базам данных и служит для решения задач согласования форматов баз данных при переходе к какой-либо одной СУБД. Следовательно, шлюзы можно рассматривать как средство, облегчающее миграцию, но не как универсальное средство межоперабельности в распределенной системе. Вообще, универсального рецепта решения задачи межоперабельности в этом контексте не существует - все определяется конкретной ситуацией, историей информационной системы и массой других факторов [2].

Технология тиражирования данных. Тиражирование данных (Data Replication - DR) - это асинхронный перенос изменений объектов исходной базы данных в базы, принадлежащие различным узлам распределенной системы. Функции DR выполняет, как правило, специальный модуль СУБД - сервер тиражирования данных, называемый репликатором (так устроены СУБД CA-OpenIngres и Sybase). В Informix-OnLine Dynamic Server репликатор встроен в сервер, в Oracle 7 для использования DR необходимо приобрести дополнительно к Oracle7 DBMS опцию Replication Option [7].

Детали тиражирования данных полностью скрыты от прикладной программы. В этом, собственно, состоит качество 6 в определении Дэйта. Синхронное обновление DDB и DR-технология - в определенном смысле антиподы. Краеугольный камень первой - синхронное завершение транзакций одновременно на нескольких узлах распределенной системы. Ee "Ахиллесова пята" - жесткие требования к производительности и надежности каналов связи. Если база данных распределена по нескольким территориально удаленным узлам, объединенным медленными и ненадежными каналами связи, а число одновременно работающих пользователей составляет сотни и выше, то вероятность того, что распределенная транзакция будет зафиксирована в обозримом временном интервале, становится чрезвычайно малой. В таких условиях (характерных, кстати, для большинства отечественных организаций) обработка распределенных данных практически невозможна.
DR-технология не требует синхронной фиксации изменений, и в этом ее сильная сторона. Можно накапливать изменения в данных в виде транзакций в одном узле и периодически копировать эти изменения на другие узлы.

Преимущества DR-технологии. Во-первых, данные всегда расположены там, где они обрабатываются - следовательно, скорость доступа к ним существенно увеличивается. Во-вторых, передача только операций, изменяющих данные (а не всех операций доступа к удаленным данным позволяет значительно уменьшить трафик. В-третьих, со стороны исходной базы для принимающих баз репликатор выступает как процесс, инициированный одним пользователем, в то время как в физически распределенной среде с каждым локальным сервером работают все пользователи распределенной системы, конкурирующие за ресурсы друг с другом. Наконец, в-четвертых, никакой продолжительный сбой связи не в состоянии нарушить передачу изменений. Дело в том, что тиражирование предполагает буферизацию потока изменений (транзакций); после восстановления связи передача возобновляется с той транзакции, на которой тиражирование было прервано [7].

DR-технология данных не лишена недостатков. Например, невозможно полностью исключить конфликты между двумя версиями одной и той же записи. Он может возникнуть, когда вследствие асинхронности два пользователя на разных узлах исправят одну и ту же запись в тот момент, пока изменения в данных из первой базы данных еще не были перенесены во вторую. При проектировании распределенной среды с использованием DR-технологии необходимо предусмотреть конфликтные ситуации и запрограммировать репликатор на какой-либо вариант их разрешения. В этом смысле применение DR-технологии - наиболее сильная угроза целостности DDB.

Прозрачность расположения. Это качество DDB в реальных продуктах должно поддерживаться соответствующими механизмами. Разработчики СУБД придерживаются различных подходов. Рассмотрим пример из Oracle. Допустим, что DDB включает локальную базу данных, которая размещена на узле в Лондоне. Создадим вначале ссылку (database link), связав ее с символическим именем (london_unix), транслируемым в IP-адрес узла в Лондоне.

CREATE PUBLIC DATABASE LINK london.com CONNECT TO london_unix USING oracle_user_ID;

Теперь мы можем явно обращаться к базе данных на этом узле, запрашивая, например, в операторе SELECT таблицу, хранящуюся в этой базе:

SELECT customer.cust_name, order.order_date FROM customer@london.com, order WHERE customer.cust_number = order.cust_number;

Очевидно, однако, что мы написали запрос, зависящий от расположения базы данных, поскольку явно использовали в нем ссылку. Определим customer и customer@london.com как синонимы:

CREATE SYNONYM customer FOR customer@london.com;

и в результате можем написать полностью независимый от расположения базы данных запрос: