Смекни!
smekni.com

Регулирование скорости (частоты вращения) асинхронного двигателя (стр. 2 из 3)

Регулирование скорости этим способом применяется в тех случаях, когда требуется небольшой диапазон регулирования скорости и работа на пониженных скоростях непродолжительна. Например, этот способ нашел широкое применение в электроприводе ряда подъемно-транспортных машин и механизмов.

Рассматриваемый способ также используется для регулирования тока и момента АД при его пуске.

Если обратиться к характеристикам двигателя, то можно отметить, что за счет подбора сопротивления резистора пусковой момент АД может быть увеличен вплоть до значения критического момента Мк. Это свойство АД используется при его пуске с моментом нагрузки, превышающим пусковой момент АД Мп на естественной характеристике.

Пусковой ток АД уменьшается по мере увеличения R, что позволяет с помощью введения добавочных резисторов осуществлять его ограничение.

Задача по расчету дополнительных резисторов в цепи ротора обычно формулируется следующим образом. Задана искусственная механическая характеристика АД (полностью или частично) или отдельная точка этой характеристики с координатами ωи, Ми. Найти сопротивление дополнительного резистора R, при включении которого в цепь ротора АД будет иметь заданную искусственную характеристику или же она будет проходить через заданную точку. При этом предполагается, что естественная механическая характеристика АД известна (рассчитана или снята экспериментально). Отметим, что требуемая искусственная характеристика может быть задана по условиям пуска или регулирования скорости.

Расчет сопротивления добавочного резистора R может быть выполнен несколькими способами в зависимости от формы задания требуемой искусственной механической характеристики.

1. Искусственная характеристика задана полностью и известен участок критического момента. В этом случае расчет целесообразно вести по формуле, с помощью которой находится отношение критических скольжений АД на естественной и искусственной характеристиках,

2. Если искусственная характеристика задана своей рабочей частью и участок критического момента не определен, то удобно использовать метод отрезков, Чаще всего этот способ применяется для АД с короткозамкнутым ротором, у которых нельзя использовать цепь ротора для включения каких-либо регулирующих устройств. Так же используется включение резистора в одну фазу, что позволяет получить примерно такие же характеристики двигателя при уменьшении количества регулирующих элементов.

Искусственные характеристики построены исходя из анализа характерных точек механической характеристики, а именно:

1. Скорость идеального холостого хода ω0 не зависит от сопротивления фазы статора R1, поэтому все искусственные характеристики проходят через одну и ту же точку на оси ординат.

2. Критические момент и скольжение АД уменьшаются по мере увеличения R.

3. Пусковой момент АД Мп, также уменьшается при увеличении R.

Искусственные характеристики мало пригодны для регулирования скорости АД: они обеспечивают небольшой диапазон изменения скорости; жесткость характеристик АД и его перегрузочная способность, характеризуемая критическим моментом, по мере увеличения R снижаются; способ отличает и низкая экономичность.

В силу этих недостатков регулирование скорости АД с помощью активных резисторов в цепи его статора применяется редко. Этот способ обычно используется для ограничения токов и моментов АД с короткозамкнутым ротором в различных переходных процессах — при пуске, реверсе и торможении. Например, такая схема применяется в электроприводе лифтов, имеющем двухскоростной АД. В таких электроприводах при переходе с высокой скорости на пониженную в цепь низкоскоростной обмотки статора вводится добавочный резистор, который обеспечивает ограничение тока и момента АД.

4. Регулирование скорости ад изменением числа пар полюсов

Этот способ используется для регулирования скорости многоскоростных АД с короткозамкнутым ротором. Возможность получения искусственных характеристик АД данным способом, и следовательно, регулирования его скорости, непосредственно следует из выражения для угловой скорости магнитного поля АД ω0 = 2 πf1/p.

Изменение числа пар полюсов АД р производится за счет переключений в обмотке статора, при этом число пар полюсов короткозамкнутого ротора изменяется автоматически. Так как количество полюсов АД может быть равным только целому числу — 1, 2, 3 и т. д., то следовательно, данный способ обеспечивает только ступенчатое регулирование скорости. Двигатели, допускающие регулирование скорости этим способом, получили название многоскоростных.

Изменение числа полюсов АД достигается, когда на статоре АД располагаются две (или больше) не связанные друг с другом обмотки, имеющие разное число пар полюсов р1 и р2. При подключении к сети одной обмотки, например с p1 парами полюсов, АД имеет синхронную скорость

Вторая обмотка при этом обесточена. Для получения другой скорости отключается первая обмотка и подключается на сеть вторая обмотка с р2 парами полюсов, при этом синхронная скорость АД станет равной

и АД будет иметь уже другую механическую характеристику.

Наряду с такими АД, получившими название многообмоточных, широкое распространение получил другой тип многоскоростных АД, у которых изменение числа пар полюсов вращающегося магнитного поля достигается за счет изменения схемы соединения статорной обмотки АД. Для этого каждая фаза статора разделена на несколько одинаковых частей (чаще всего на две части) и имеет от них соответствующее число выводов.

Рассмотрим принцип получения различного числа пар полюсов при переключении частей обмотки статора на следующем упрощенном примере.

На рис. 1 показана схема одной фазы статорной обмотки, которая состоит из двух одинаковых частей 1н—1к, 2н—2к, имеющих два проводника. Если секции соединены так, как это показано на рис. 4.9, а, и к обмотке статора подведен ток I, имеющий в данный момент времени направление, показанное стрелками, то образуется магнитное

Рис. 1. Изменение числа пар полюсов обмотки статора

поле с четырьмя полюсами, т. е. p = 2 (направление магнитных силовых линий определяем с помощью правила буравчика). Оставив направление тока тем же, изменим несколько схему соединения обмотки, подключив конец первой секции 1к к концу второй 2к (рис. 1б). Из рис. 1б следует, что в этом случае статорная обмотка образует магнитное поле с числом пар полюсов, вдвое меньшим по сравнению с полем рис. 1а. Уменьшение вдвое числа пар полюсов достигается и в схеме рис. 1в, где секции соединены параллельно (1н с 2к, 1к с 2н). В том и другом случае (рис. 1 б и в) уменьшение числа пар полюсов, и следовательно, увеличение скорости АД, достигается изменением направления тока на противоположное в одной из секций (в данном случае во второй). При этом диапазон изменения угловой скорости магнитного поля равен двум.

Наиболее часто на практике встречаются две схемы переключения статорной обмотки многоскоростных АД: 1) с треугольника (Д) на двойную звезду (УУ); 2) со звезды (У) на двойную звезду (УУ)..

Рассмотрим схемы соединения статора 'и механические характеристики АД для этих случаев.

Треугольник — двойная звезда. Для получения большего числа пар полюсов р^ секции каждой фазы статора включены в треугольник согласно, т. е. так, как это показано на рис. 2а, где А и A — начала соответственно первой и второй секций фазы A; А и A — их концы. Обозначения для выводов секций фаз В и С, схемы включения которых аналогичны схемам фазы A, опущены. Соединение секций по схеме рис.2 б, как отмечалось выше, вызовет уменьшение в 2 раза числа пар полюсов АД. Схема рис. 2б, получила название двойной звезды.

Для получения общего вида механических характеристик определим допустимую мощность АД при включении его статора по схемам рис. 2, а и б. Учитывая, что допустимый ток в секции обмотки статора I1доп = I1ном остается неизменным при переключении числа пар полюсов, допустимую первичную мощность определим:

для схемы треугольник (рис. 2, а)

(1)

для схемы двойная звезда (рис. 2, б)

(2)

Рис. 2.

Соединение обмоток статора в треугольник (а), двойную звезду (б) и механические характеристики при схемах треугольник — двойная звезда (Д—УУ) (в)

Из полученных выражений следует, что при cos φ1д ≈ cos φ1уу допустимая мощность АД остается практически неизменной. Поэтому при увеличении вдвое числа пар полюсов АД и уменьшении тем самым вдвое синхронной скорости допустимый момент на валу АД увеличивается примерно в 2 раза. Механические характеристики АД для данного способа переключения обмоток показаны на рис. 2в. Они соответствуют регулированию скорости при постоянной мощности.

Звезда — двойная звезда. В этой схеме меньшей угловой скорости АД соответствует соединение обмоток статора, показанное на рис. 3а. Секции фаз статора

Рис. 3.