Смекни!
smekni.com

Інтелектуальний аналіз даних (стр. 1 из 9)

ВСТУП

Останнім часом для вирішення практичних завдань все частіше застосовуються методи інтелектуального аналізу даних (Data Mining). Інтелектуальний аналіз даних (англ. Data Mining) — виявлення прихованих закономірностей або взаємозв'язків між змінними у великих масивах необроблених даних. Підрозділяється на завдання класифікації, моделювання і прогнозування та інші.

Побудова моделі інтелектуального аналізу даних є складовою частиною масштабнішого процесу, який включає всі етапи, починаючи з визначення базової проблеми, яку модель вирішуватиме, до розгортання моделі в робочому середовищі. Даний процес може бути заданий за допомогою наступних шести базових кроків:

- постановка задачі;

- підготовка даних;

- перегляд даних;

- побудова моделей;

- дослідження, перевірка, прогнозування за допомогою моделей;

- розгортання і оновлення моделей.

До складу Microsoft SQL Server 2005 і 2008 входить цілий ряд служб, які дозволяють виконати кожен крок. Вихідна база даних , як правило, є реляційною, для побудови і наповнення даними інформаційного сховища використовується служба Integration Services, куб будується і представляється в Analysis Services, робота з моделями здійснюється в Biseness Intelligence Studio з використанням спеціальної мови DMX.

На основі цих методів були розроблені алгоритми пошуку асоціативних правил. Вперше ці алгоритми були запропоновані для знаходження типових шаблонів покупок, що здійснюються в супермаркетах. Згодом завдання було розширене, і зараз ці алгоритми вирішують проблему пошуку закономірностей між зв'язаними подіями. Прикладом асоціативного правила може служити вислів, що людина, що купила молоко, також купить хліб за один візит в магазин.

Метою даної роботи є побудова модель інтелектуального аналізу даних з використанням алгоритму асоціативних правил на базі інформаційного сховища підприємства.

Для досягнення цієї мети необхідно вирішити ряд задач:

- створити структуру інформаційного сховища на базі OLTP (Online Transaction Process) бази даних, що містить інформацію про продажі товарів;

- організувати періодичне перевантаження даних з OLTP в інформаційне сховище;

- створити модель інтелектуального аналізу структури споживчої корзини по алгоритму асоціативних правил;

- провести аналіз моделі і прогнозування.

У дипломній роботі детально розглянуто задачі асоціації. Дуже часто покупці набувають не одного товару, а декілька. В більшості випадків між цими товарами існує взаємозв'язок. Ця інформація може бути використана для розміщення товару на полицях в магазинах.

Після створення моделі можна провести її аналіз на предмет виявлення цікавих для нас (шаблонів) правил.

Метою аналізу є встановлення наступних залежностей: якщо в транзакції зустрівся деякий набір елементів X, то на підставі цього можна зробити висновок про те, що інший набір елементів Y також повинен з'явитись в цій транзакції. Встановлення таких залежностей дає нам можливість знаходити дуже прості і інтуїтивно зрозумілі правила.

Сучасні бази даних мають дуже великі розміри, досягаючи гіга- і терабайтів, і тенденцію до подальшого збільшення. І тому, для знаходження асоціативних правил потрібні ефективні масштабовані алгоритми, що дозволяють вирішити задачі за певний час. Один з алгоритмів, що ефективно вирішують подібний клас задач – це алгоритм Apriori.

На основі аналізу можемо створити прогноз даних.

Прогнозування — складання прогнозів продажів і складських запасів, виявлення взаємозалежностей між ними для усунення недоліків і підвищення прибутку.

Для створення прогнозів використовується мова Data Mining Extensions (DMX), яка є розширенням SQL і містить команди для створення, зміни моделей і здійснення передбачень на підставі різних моделей.


1 ОГЛЯД ІСНУЮЧИХ МЕТОДІВ ІНТЕЛЕКТУАЛЬНОГО АНАЛІЗУ ДАНИХ

1.1 Визначення поняття Data Mining

Data Mining – це процес підтримки ухвалення рішень, заснований на пошуку в даних прихованих закономірностей (шаблонів інформації).

Технологію Data Mining достатньо точно визначає Григорій Піатецкий - Шапіро (Gregory Piatetsky-Shapiro) – один із засновників цього напряму: “Data Mining – це процес виявлення в сирих даних раніше невідомих, нетривіальних, практично корисних і доступних інтерпретації знань, необхідних для ухвалення рішень в різних сферах людської діяльності” [4].

Суть і мету технології Data Mining можна визначити так: це технологія, яка призначена для пошуку у великих об'ємах даних неочевидних, об'єктивних і корисних на практиці закономірностей.

Неочевидних – це значить, що знайдені закономірності не виявляються стандартними методами обробки інформації або експертним шляхом.

Об'єктивних – це значить, що знайдені закономірності повністю відповідатимуть дійсності, на відміну від експертної думки, яка завжди є суб'єктивною.

Практично корисних – це значить, що висновки мають конкретне значення, якому можна знайти практичне застосування.

Знання – сукупність відомостей, яка утворює цілісний опис, відповідний деякому рівню обізнаності про описуване питання, предмет, проблему і т.д.

Використовування знань (knowledge deployment) означає дійсне застосування знайдених знань для досягнення конкретних переваг (наприклад, в конкурентній боротьбі за ринок).

Приведемо ще декілька визначень поняття Data Mining.

Data Mining – це процес виділення з даних неявної і неструктурованої інформації і представлення її у вигляді, придатному для використовування.

Data Mining – це процес виділення, дослідження і моделювання великих об'ємів даних для виявлення невідомих до цього шаблонів (patterns) з метою досягнення переваг в бізнесі (визначення SAS Institute).

Data Mining – це процес, мета якого – знайти нові значущі кореляції, зразки і тенденції в результаті просівання великого об'єму бережених даних з використанням методик розпізнавання зразків плюс застосування статистичних і математичних методів (визначення Gartner Group).

«Mining» англійською означає «видобуток корисних копалин», а пошук закономірностей у величезній кількості даних дійсно схожий на цей процес.

Перш ніж використовувати технологію Data Mining, необхідно ретельно проаналізувати її проблеми [4]:

- Data Mining не може замінити аналітика;

- не може складати розробки і експлуатації додатку Data Mining;

- потрібна підвищена кваліфікація користувача;

- витягання корисних відомостей неможливе без доброго розуміння суті даних;

- складність підготовки даних;

- висока вартість;

- вимога наявності достатньої кількості репрезентативних даних.

Data Mining тісно пов’язана з різними дисциплінами , що засновані на інформаційних технологіях та математичних методах обробки інформаціі (рисунок 1.1).


Рисунок 1.1 – Data Mining як мультідісциплінарна область

Кожний з напрямів, що сформували Data Mining, має свої особливості. Проведемо порівняння з деякими з них.

1.2 Порівняння статистики, машинного навчання і Data Mining

Статистика – це наука про методи збору даних, їх обробки і аналізу для виявлення закономірностей, властивих явищу, що вивчається.

Статистика є сукупністю методів планування експерименту, збору даних, їх уявлення і узагальнення, а також аналізу і отримання висновків на підставі цих даних.

Статистика оперує даними, що отримані в результаті спостережень або експериментів.

Перевагами є:

- більш ніж Data Mining, базується на теорії;

- більш зосереджується на перевірці гіпотез.

Єдиного визначення машинного навчання на сьогоднішній день немає.

Машинне навчання можна охарактеризувати як процес отримання програмою нових знань. Мітчелл в 1996 році дав таке визначення: «Машинне навчання – це наука, яка вивчає комп'ютерні алгоритми, автоматично що поліпшуються під час роботи».

Одним з найпопулярніших прикладів алгоритму машинного навчання є нейронні мережі.

Алгоритми машинного навчання є:

- більш евристичні;

- концентрується на поліпшенні роботи агентів навчання.

Переваги Data Mining:

- інтеграція теорії і евристик;

- сконцентрована на єдиному процесі аналізу даних, включає очищення даних, навчання, інтеграцію і візуалізацію результатів.


1.3 Методи Data Mining

Методи, що використовує технологія Data Mining можна розподілити на технологічні, статистичні та кібернетичні.

Таблиця 1.1- Методи Data Mining

Методи Data Mining

Характеристика

Технологічні методи

а) безпосереднє використання даних, або збереження даних. Методи цієї групи: кластерний аналіз, метод найближчого сусіда; б) виявлення і використання формалізованих закономірностей, або дистиляція шаблонів - логічні методи, методи візуалізації, методи крос-табуляції, методи, що засновані на рівняннях.

Статистичні методи

а) дескриптивний аналіз і опис вихідних даних; б) аналіз зв'язків (кореляційний і регресійний аналіз, факторний аналіз, дисперсійний аналіз); в) багатовимірний статистичний аналіз (компонентний аналіз, дискримінантний аналіз, багатовимірний регресійний аналіз, канонічні кореляції і ін.); г) аналіз тимчасових рядів (динамічні моделі і прогнозування).

Кібернетичні методи

а)штучні нейронні мережі (розпізнавання, кластеризація, прогноз); б) еволюційне програмування (в т.ч. алгоритми методу групового обліку аргументів); в) генетичні алгоритми (оптимізація); ґ) асоціативний алгоритм; г) нечітка логіка; д) дерева рішень; є) системи обробки експертних знань.

1.4 Відмінності Data Mining від інших методів аналізу даних

Традиційні методи аналізу даних в основному орієнтовані на перевірку наперед сформульованих гіпотез (статистичні методи) і на «грубий розвідувальний аналіз», що становить основу оперативної аналітичної обробки даних (Online Analytical Processing, OLAP), тоді як одне з основних положень Data Mining – пошук неочевидних закономірностей. Інструменти Data Mining можуть знаходити такі закономірності самостійно і також самостійно будувати гіпотези про взаємозв'язки. Оскільки саме формулювання гіпотези щодо залежності є найскладнішою задачею, перевага Data Mining в порівнянні з іншими методами аналізу є очевидною.