Смекни!
smekni.com

Разработка программного обеспечения для реализации арифметических операций над комплексными числами (стр. 2 из 2)

z = (a+c) + (b+d)i

Числа a + bi и a-bi называются сопряженными. Их сумма равна действительному числу 2а,

(а+bi) + (а-bi) = 2а.

Числа а+bi и -a-bi называются противоположными. Их сумма равна нулю. Комплексные числа равны, если равны их действительные части и коэффициенты мнимых частей: а+bi = c+di, если a = c, b = d. Комплексное число равно нулю тогда, когда его действительная часть и коэффициент мнимой части равны нулю, т.е. z=a + bi = 0, если a=0, b=0.

Действительные числа являются частным случаем комплексных чисел. Если b=0, то a+bi=a - действительное число. Если а = 0,

, то a + bi = bi – чисто мнимое число. Для комплексных чисел справедливы переместительный и сочетательный законы сложения. Их справедливость следует из того, что сложение комплексных чисел по существу сводится к сложению действительных частей и коэффициентов мнимых частей, а они являются действительными числами, для которых справедливы указанные законы.

2.2.2 Вычитание комплексных чисел

Вычитание комплексных чисел определяется как действие, обратное сложению: разностью двух комплексных чисел a + bi и с + di называется комплексное число х + уi, которое в сумме с вычитаемым дает уменьшаемое. Отсюда, исходя из определения сложения и равенства комплексных чисел получим два уравнения, из которых найдем, что х = а-с, у = b-d. Значит, (а+bi) - (c+di) = (a-c) + (b-d)i.

2.2.3 Произведение комплексных чисел

Произведение комплексных чисел z1=a+bi и z2=c+di называется комплексное число

z =(ac-bd) + (ad + bc)i, z1z2 = (a + bi)(c + di) = (ac - bd) + (ad + bc)i.

Легко проверить, что умножение комплексных чисел можно выполнять как умножение многочленов с заменой i2 на –1. Для умножения комплексных чисел также справедливы переместительный и сочетательный законы, а также распределительный закон умножения по отношению к сложению.

Из определения умножения получим, что произведение сопряженных комплексных чисел равно действительному числу: (a + bi)(a - bi) = a2 + b2

2.2.4 Деление комплексных чисел

Деление комплексных чисел, кроме деления на нуль, определяется как действие, обратное умножению. Конкретное правило деления получим, записав частное в виде дроби и умножив числитель и знаменатель этой дроби на число, сопряженное со знаменателем:


.

3. Программная реализация решения задачи

Файл UComplex.h

//---------------------------------------------------------------------------

#ifndefUComplexH

#defineUComplexH

//---------------------------------------------------------------------------

#include <Classes.hpp>

#include <Controls.hpp>

#include <StdCtrls.hpp>

#include <Forms.hpp>

#include "HandTuning.h"

#include <ExtCtrls.hpp>

#include <Menus.hpp>

//---------------------------------------------------------------------------

class TfrmComplex : public TForm

{

__published:// IDE-managed Components

TButton *btnCalc;

THandTuning *Real1;

THandTuning *Img1;

TLabel *Label1;

TLabel *Label2;

THandTuning *Real2;

THandTuning *Img2;

TLabel *Label3;

TRadioGroup *rgrOperation;

TLabel *Label4;

THandTuning *resReal;

THandTuning *resImg;

TLabel *Label5;

TLabel *Label6;

TLabel *Label7;

TButton *btnExit;

TButton *btnClear;

TLabel *Label8;

TLabel *Label9;

TMainMenu *MainMenu1;

TMenuItem *N1;

TMenuItem *N2;

TMenuItem *N3;

TMenuItem *N4;

TMenuItem *N5;

TMenuItem *N6;

TMenuItem *N7;

void __fastcall btnCalcClick(TObject *Sender);

void __fastcall btnExitClick(TObject *Sender);

void __fastcall btnClearClick(TObject *Sender);

void __fastcall NClick(TObject *Sender);

private:// User declarations

void __fastcall Sum(double r1, double img1, double r2, double img2, double &r, double &img);

void __fastcall Subtr(double r1, double img1, double r2, double img2, double &r, double &img);

void __fastcall Mult(double r1, double img1, double r2, double img2, double &r, double &img);

void __fastcall Div(double r1, double img1, double r2, double img2, double &r, double &img);

public:// User declarations

__fastcall TfrmComplex(TComponent* Owner);

};

//---------------------------------------------------------------------------

extern PACKAGE TfrmComplex *frmComplex;

//---------------------------------------------------------------------------

#endif

Файл UComplex.cpp

//---------------------------------------------------------------------------

#include <vcl.h>

#pragma hdrstop

#include "UComplex.h"

//---------------------------------------------------------------------------

#pragma package(smart_init)

#pragma link "HandTuning"

#pragma resource "*.dfm"

TfrmComplex *frmComplex;

//---------------------------------------------------------------------------

void __fastcall TfrmComplex::Sum(double r1, double img1, double r2, double img2, double &r, double &img)

{

r = r1 + r2;

img = img1 + img2;

}

//---------------------------------------------------------------------------

void __fastcall TfrmComplex::Subtr(double r1, double img1, double r2, double img2, double &r, double &img)

{

r = r1 - r2;

img = img1 - img2;

}

//---------------------------------------------------------------------------

void __fastcall TfrmComplex::Mult(double r1, double img1, double r2, double img2, double &r, double &img)

{

r = r1 * r2 - img1 * img2;

img = r1 * img2 + img1 * r2;

}

//---------------------------------------------------------------------------

void __fastcall TfrmComplex::Div(double r1, double img1, double r2, double img2, double &r, double &img)

{

if((r2 * r2 + img2 * img2) == 0)

{

Application->MessageBoxA(L"При выполнении операции деления &bsol;nвозникла ошибка: деление на ноль. &bsol;nПроверьте числа.",

L"Ошибка", MB_OK + MB_ICONERROR);

return;

}

r = (r1 * r2 + img1 * img2) / (r2 * r2 + img2 * img2);

img = (r2 * img1 - r1 * img2) / (r2 * r2 + img2 * img2);

}

//---------------------------------------------------------------------------

__fastcall TfrmComplex::TfrmComplex(TComponent* Owner)

: TForm(Owner)

{

}

//---------------------------------------------------------------------------

void __fastcall TfrmComplex::btnCalcClick(TObject *Sender)

{

double r1 = Real1->Value;

double img1 = Img1->Value;

double r2 = Real2->Value;

double img2 = Img2->Value;

double real = 0;

double img = 0;

switch(rgrOperation->ItemIndex)

{

case 0:

Sum(r1, img1, r2, img2, real, img);

break;

case 1:

Subtr(r1, img1, r2, img2, real, img);

break;

case 2:

Mult(r1, img1, r2, img2, real, img);

break;

case 3:

Div(r1, img1, r2, img2, real, img);

break;

}

resReal->Value = real;

resImg->Value = img;

}

//---------------------------------------------------------------------------

void __fastcall TfrmComplex::btnExitClick(TObject *Sender)

{

this->Close();

}

//---------------------------------------------------------------------------

void __fastcall TfrmComplex::btnClearClick(TObject *Sender)

{

Real1->Value = 0;

Img1->Value = 0;

Real2->Value = 0;

Img2->Value = 0;

resReal->Value = 0;

resImg->Value = 0;

}

//---------------------------------------------------------------------------

void __fastcall TfrmComplex::NClick(TObject *Sender)

{

rgrOperation->ItemIndex = ((TMenuItem*)Sender)->Tag;

btnCalc->Click();

}

//---------------------------------------------------------------------------

4. Пример выполнения программы

Пример 1

Рисунок 1 – Входные данные


Пример 2

Рисунок 2 – Выходные данные

Пример 3

Рисунок 3 – Входные данные

Пример 4

Рисунок 4 – Входные данные


Пример 5

Рисунок 5 – Входные данные

Пример 6

Рисунок 6 – Входные данные

Пример 7

Рисунок 7 – Входные данные


Пример 8

Рисунок 8 – Входные данные

ЗАКЛЮЧЕНИЕ

Применение комплексных чисел позволяет удобно и компактно сформулировать многие математические модели, применяемые в математической физике и в естественных науках - электротехнике, гидродинамике, картографии, квантовой механике, теории колебаний и многих других.

Итогом работы можно считать созданную программу для реализации арифметических операций над комплексными числами. Созданный алгоритм и его программная реализация могут служить органической частью решения более сложных задач.


СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ и литературы

1. Архангельский А.Я. Программирование в С++ Builder 6. [Текст] / А.Я.Архангельский. – М.: Бином, 2003. С. 1154.

2. Ахо А.. Построение и анализ вычислительных алгоритмов [Электронный ресурс] / А. Ахо, Дж. Хопкрофт, Дж. Ульман. – М.: Мир. 1999. С. 143.

3. Выгодский М.Я. Справочник по элементарной математике. [Текст] / М.Я. Выгодский – М.: АСТ: Астрель, 2006. С. 509.

4. Дадаян А.А. Алгебра и геометрия. [Текст] / А.А Дадаян, В.А. Дударенко. – М.: Минск, 1999. С. 342.

5. Камалян Р.З. Высшая математика. [Текст] / Р.З. Камалян. – М.: ИМСИТ, 2004. С.310.

6. Комплексное число [Электронный ресурс] – Режим доступа: http://ru.wikipedia.org/wiki/Комплексное_число.

7. Мейерс С. Наиболее эффективное использование С++. [Электронный ресурс] / С. Мейерс. – М.: ДМК Пресс, 2000. С. 304.

8. Эккель Б. Введение в стандартный С++. [Электронный ресурс] / Б. Эккель. – М.:Питер, 2004. С. 572.