5. Для станів, що залишилися, знову в порядку списку п.2. використовують коди з двома одиницями, потім із трьома і так далі поки не будуть закодовані вес стани.
У результаті виходить таке кодування, при якому чим більше мається переходів у деякий стан, тим менше одиниць у його коді. Вираження для функцій збудження будуть простіше для D-тригерів, тому що функції порушення однозначно визначаються кодом стану переходу.
Результати кодування за цим алгоритмом заношу до таблиці 3.
2.2.4. Структурний синтез автомата на підставі заданого типу тригерів
Таблиця переходів D-тригера:
Табл.2. Таблиця переходів D-тригера
Qt | Qt+1 | D |
0 | 0 | 0 |
0 | 1 | 1 |
1 | 0 | 0 |
1 | 1 | 1 |
На підставі цієї таблиці я вказую у табл.1 який тригер встановиться в 1, а який в 0.
2.2.5. Функції збудження тригерів та вихідних сигналів
Введемо слідуючі позначення:
U=
; A= ; B= ; W= ; D= ;H=
; I= ; J= ; L= ; N= ;O=
; P= ; Q= ; S= ; C= ;E=
; F= ; X= ; G= ; K= ;M=
; R= ; T= ; V= . ;+
; ; ; . ; ; ; ; ; ; ; ; ; .СПИСОК ВИКОРИСТАНОЇ ЛІТЕРАТУРИ
1. Прикладная теория цифрових автоматов/К.Г.Самофалов, А.М.Романкевич, В. Н. Валуйский и др.-К.:Вища шк.,1987.
2. Савельєв А. Я. Прикладная теория цифрових автоматов.-М.: Высш. шк.,1987.
3. Справочник по интегральным микросхемам / Под ред. Б. В. Тарабрина,-М.: Радио и связь, 1987.
4. ГОСТ 2.708-81 ЕСКД. Правила выполнения электрических схем цифровой вычислительной техники.
5. ГОСТ 2.743-82 ЕСКД. Обозначения условные графические в схемах. Элементы цифровой техники.