P(H:E) – вероятность осуществления некоторой гипотезы H при наличии определенных подтверждений свидетельств E.
P(E:H), P(E:неH) – соответственно, вероятности получения ответа Да если возможный исход верен или неверен.
Из самого названия нейроподобные растущие сети видно, что сеть нейроподобная, т.е. обладает свойствами нейронных сетей, в то же время растущая, сохраняя свойства РПС, что позволяет избежать некоторых недостатков присущих нейронным сетям. И в то же время поддерживает функции присущие биологическим объектам и интеллектуальным системам.
Так, функция восприятие, осуществляется рецепторным полем н-РС, а в многомерных н-РС рецепторными полями различных информационных пространств (визуального, текстового, звукового, тактильного и др.).
Представление знаний их обработка и обучение сети, осуществляются в рецепторных зонах н-РС и в рецепторных и эффекторных зонах рецепторно-эффекторных н-РС в процессе восприятия информации и построения сети.
Общение и поведение системы, обладающей новой информационной структурой, определяется наличием в рецепторно-эффекторных н-РС рецепторной и эффекторной зон. В рецепторной зоне осуществляется накопление условий возникающих во внешней среде, а в эффекторной зоне вырабатываются действия адекватные внешним условиям, осуществляя адекватное взаимодействие с окружающей средой. Рецепторно-эффекторные н-РС, содержащие рецепторные и эффекторные зоны, позволяют на соответствующие условия (восприятие информации) вырабатывать управляющие воздействия во внешний мир (формировать поведения системы).
Заключение. В основе нейроподобных растущих сетей является синтез знаний выработанных классическими теориями - растущих пирамидальных сетей и нейронных сетей. Первые из них дают возможность образовывать смыслы, как объекты и связи между ними по мере построения самой сети, т.е. число объектов, как и связей между нимибудет такое именно, какое нужно, будучи ограниченным лишь объемом памяти машины. При этом каждый смысл (понятие) приобретает отдельную компоненту сети как вершину, связанную с другими вершинами. В общем это вполне соответствует структуре отражаемой в мозге, где каждое явное понятие представлено определенной структурой и имеет свой обозначающий символ. Если указанные компоненты являются нейроподобными элементами, а связи приобретают различный вес, то получим универсальную нейроподобную сеть со всеми ее необходимыми свойствами. Вместе с тем эта сеть практически свободна от ограничений на количество нейроподобных элементов в котором и нужно разместить соответствующую информацию, т.е. построить саму сеть, представляющую данную предметную область. Во вторых эта сеть приобретает повышенную семантическую ясность за счет образования не только связей между нейроподобными элементами, но и самих элементов как таковых, т.е. здесь имеет место не просто построение сети путем размещения смысловых структур в среде нейроподобных элементов, а, собственно, создание самой этой среды, как эквивалента среды памяти [6].
1. Поспелов Г.С. Искусственный интеллект – основка новой информационной технологии. М.: Наука, 1988. – 280 с.
2. Глушков В.М. Основы безбумажной информатики. М.: Наука, 1987. – 552с.
3. Брюхович Е.И. К вопросу об информатизации общества. Методология решения задачи научного предвидения для вывода из кризиса отечественной вычислительной техники // Математические машины и системы. - 1997.-№2.-С.122-132.
4. Гладун В.П. Процессы формирования новых знаний - София: СД "Педагог 6", - 1994. - 192с.
5. Ященко В.А. Рецепторно-эффекторные нейроподобные растущие сети эффективное средство моделирования интеллекта. I, II - // Кибернетика и сист. анализ № 4, 1995. С. 54 – 62, № 5, 1995. С. 94 - 102.
6. Рабинович З.Л., Ященко В.А. Подход к моделированию мыслительных процессов на основе нейроподобных растущих сетей // Кибернетика и сист. анализ № 5, 1996. С.3-20.
7. Линдсей П., Норман Д. Переработка информации у человека (Введение в психологию).\Под редакц. А.Р. Лурия. - М.: - 1974. - с.549.