В этом модуле реализован новый подход мультиблочного метода построения структурированной расчетной сетки, состоящей полностью из гексаэдров. Суть которого заключена в построении грубой топологически подобной модели, которая затем проецируется на исходную геометрию. Удобный интерфейс для анализа сетки и редактирования топологии позволяет достаточно быстро построить и редактировать будущую сетку. Модуль позволяет использовать полуавтоматический генератор гексаэдрических сеток, в т.ч. O-сеток как внутри, так и снаружи геометрического объекта, с инструментами автоматического проецирования на геометрические поверхности, рис. 1.5.
· "O grid" сетка
· Деление блоков
· Удаление ребер и граней
· Автоматическая ассоциация ребер и граней.
· Сглаживание сетки
· Перестроение сетки на новой геометрии используя replay файлы
· Слияние граней и блоков.
· Смена материала для блоков.
· Создание вручную блока, по вершинам.
· "Wing grid" сетка. Специальная сетка которая используется для построения специальной группы блоков для описания геометрических объектов подобных крылу самолета.
· Улучшение сетки (Refinement)
· И множество других инструментов.
Проверка на наличие ошибок.При построении сложных сеток возможно возникновение ошибок и т.н. вероятных ошибок (вероятных проблем). Ошибками будем называть особенности построенной сетки, которые приводят к невозможности расчета в большинстве расчетных пакетах. Например, дублирующие элементы или ориентация ячейки. Вероятные ошибки это особенности построенной сетки, которые могут вызвать проблемы при импорте и решении в других пакетах. В большинстве случаях ICEM CFD в состоянии автоматически исправить подобные ошибки.
Сглаживание. После того как расчетная сетка создана в одном из модулей ICEM CFD, можно провести оценку ее по выбранному критерию, например на соотношение длин ребер элемента, величину угла между ребрами элемента и др. ICEM CFD построит гистограмму распределения количества элементов по величине критерия. Можно выбрать столбцы гистограммы для отображения этих элементов отдельно от остальных.
Далее можно задать величину выбранного критерия и ICEM CFD произведет сглаживание и по возможности улучшит качество элементов с таким расчетом, что бы ниже этого критерия элементы не присутствовали в сетке.
Редактирование. Однако в некоторых случаях приходится применять ручное редактирование сетки. Такие операции как перемещение узла (можно перемещать мышью визуально контролируя результат), удаление и создание элемента, распределение по семействам и т.д.
Заключительный шаг это экспорт сетки в выбранном вами формате (расчетные пакеты, форматы которых поддерживает ICEM CFD). Можно также задать граничные условия и сохранить вместе с ними.
Ansys CFX - программный комплекс, ориентированный на решение наиболее сложных задач вычислительной аэро- и гидродинамики, включая расчет турбомашин, горения и химических реакций, многофазных сред, радиационного излучения. CFX строит расчетные сетки высокого качества, обладает точной конечно-разностной схемой и быстрым решателем, работает на любых параллельных вычислительных платформах, имеет интерфейс передачи данных в прочностные и акустические пакеты. CFX присвоена международная сертификация по ISO 9001. рис. 1.8.
Ansys CFX основан, на конечно-объемном методе (МКО) решения уравнений гидродинамики таких как, уравнение неразрывности, уравнение сохранения энергии и уравнение количества движения. Основная идея МКО легко поддается прямой физической интерпретации. Расчетную область разбивают на N-е число непересекающихся контрольных объемов таким образом, что каждая узловая точка содержится в одном контрольном объеме. Дифференциальное уравнение интегрируют по каждому контрольному объему. Для вычисления интегралов используют кусочно-непрерывные функции, которые описывают изменение зависимой переменной (например, одной из составляющих скорости) между сеточными узлами. В результате находят дискретный аналог дифференциального уравнения. Дискретные уравнения вычисляются с помощью метода AlgebraicCoupledMultigrid (AMG), разработанного М.Raw и G.Schneider. Данный метод использует неявную связанную схему решения системы линейных алгебраических уравнений. Вычислительные затраты этого метода линейно зависят от числа узловых точек.
Одним из важных свойств МКО является то, что в нем заложено точное интегральное сохранение таких величин, как масса, количество движения и энергия на любой группе контрольных объемов, а следовательно, и на всей расчетной области. Это свойство проявляется при любом числе узловых точек. Таким образом, даже решение на грубой сетке удовлетворяет точным интегральным балансам.
Ansys CFX позволяет проводить расчеты на смешанных сетках, состоящих из различных типов элементов: тетраэдров, призм, клиновидных элементов и гексаэдров.
При расчете стационарных вариантов процесс итерации по времени завершается при достижении уровня сходимости, определенного пользователем. Для расчета переходного режима итерационная процедура обновляет нелинейные коэффициенты на каждом временном шагу (цикл для коэффициентов), в то время как внешний цикл приближается к решению по времени.
Создание оптимальной, в рамках решаемой задачи, расчетной сетки является трудоемким процессом, итог которого напрямую влияет на точность моделирования. При создании сетки CFX позволяет пользователю самому решать, какой инструмент он хочет использовать для этой задачи, и предоставляет широкие возможности по импортированию сетки из различных коммерческих пакетов, рекомендованных CFX к применению. На тот случай, если пользователь использует специализированный генератор сетки, созданный внутри предприятия, имеется возможность импортировать сетку через нейтральный формат.
CFX обладает возможностью работать с тетраэдральной и гексагональной сетками различной степени детализации и адаптации (в том числе с адаптацией призматической сеткой по границе геометрической области).
В CFX предусмотрена динамическая адаптация сетки к решению по различным критериям рис. 1.9. Кроме того, имеется возможность интерполировать результаты расчетов с более грубой сетки на более подробную с целью ускорения сходимости и, следовательно, сокращения времени расчета.
Задачей препроцессора является импортирование расчетной сетки, задание типа решаемой проблемы, назначение среды моделирования и расстановка начальных и граничных условий.
Препроцессор поддерживает импортирование более десятка различных форматов расчетной сетки в монолитном виде и в виде сборки. Инструменты CFX-Pre позволяют комбинировать элементы сборки между собой различными методами - сшивать, разбивать, объединять в группы - и назначать им различные свойства, как то: единое граничное условие, либо же, разъединять на несколько расчетных областей, которым, в свою очередь, может быть назначена различная модель взаимодействия.
Одной из отличительных особенностей CFX-Pre является возможность подключать дополнительные зависимости и функции, при описании тех или иных газодинамических переменных и физических величин, используя коды алгоритмического языка Фортран, в том числе и откомпилированные библиотеки. Учитывая, что в отечественной науке имеется огромный и уникальный задел, реализованный именно на этом языке, есть возможность эффективно применить имеющиеся наработки в русле новых технологий.
Все это позволяет гибко и удобно управлять конфигурацией начальных и граничных условий, назначением расчетных областей и подобластей, что делает работу в среде CFX-Pre более эффективной и рациональной.
Решатель в CFX обладает рядом особенностей, позволяющих гибко и эффективно организовывать процесс расчета. Прежде всего, следует отметить имеющуюся возможность проведения параллельных вычислений. CFX работает как на многопроцессорных рабочих станциях, так и на кластерах в составе гомогенной сети, где в качестве расчетных узлов выступают, как Unix-подобные системы, так и Windows-системы, независимо от числа процессоров на каждой из них.
Залог эффективности параллельного решателя лежит в концепции синхронности работы расчетных узлов. Первоначально производится оценка производительности каждого из узлов, после чего каждому расчетному узлу выдается тот объем вычислений, который он сможет выполнить за равный промежуток времени со всеми остальными.
Данная технология позволяет пользователю проводить эффективную и гибкую политику в аппаратном обеспечении своего предприятия, когда масштабирование кластера производится, на выбор пользователя, либо наращиванием конфигурации каждой отдельной рабочей станции, либо же увеличением количества расчетных узлов.