Антивирусные блокировщики — это резидентные программы, перехватывающие «вирусо-опасные» ситуации и сообщающие об этом пользователю. К «вирусо-опасным» относятся вызовы на открытие для записи в выполняемые файлы, запись в boot-сектора дисков или MBR винчестера, попытки программ остаться резидентно и т.д., то есть вызовы, которые характерны для вирусов в моменты из размножения. Иногда некоторые функции блокировщиков реализованы в резидентных сканерах.
К достоинствам блокировщиков относится их способность обнаруживать и останавливать вирус на самой ранней стадии его размножения, что, кстати, бывает очень полезно в случаях, когда давно известный вирус постоянно «выползает неизвестно откуда». К недостаткам относятся существование путей обхода защиты блокировщиков и большое количество ложных срабатываний, что, видимо, и послужило причиной для практически полного отказа пользователей от подобного рода антивирусных программ (например, неизвестно ни об одном блокировщике для Windows95/NT — нет спроса, нет и предложения).
Необходимо также отметить такое направление антивирусных средств, как антивирусные блокировщики, выполненные в виде аппаратных компонентов компьютера («железа»). Наиболее распространенной является встроенная в BIOS защита от записи в MBR винчестера. Однако, как и в случае с программными блокировщиками, такую защиту легко обойти прямой записью в порты контроллера диска, а запуск DOS-утилиты FDISK немедленно вызывает «ложное срабатывание» защиты.
Существует несколько более универсальных аппаратных блокировщиков, но к перечисленным выше недостаткам добавляются также проблемы совместимости со стандартными конфигурациями компьютеров и сложности при их установке и настройке. Все это делает аппаратные блокировщики крайне непопулярными на фоне остальных типов антивирусной защиты.
Иммунизаторы - это программы записывающие в другие программы коды, сообщающие о заражении. Они обычно записывают эти коды в конец файлов (по принципу файлового вируса) и при запуске файла каждый раз проверяют его на изменение. Недостаток у них всего один, но он летален: абсолютная неспособность сообщить о заражении стелс-вирусом. Поэтому такие иммунизаторы, как и блокировщики, практически не используются в настоящее время. Кроме того многие программы, разработанные в последнее время, сами проверяют себя на целостность и могут принять внедренные в них коды за вирусы и отказаться работать.
Вирусы успешно внедрились в повседневную компьютерную жизнь и покидать ее в обозримом будущем не собираются. Так кто же пишет вирусы? Основную их массу создают студенты и школьники, которые только что изучили язык ассемблера, хотят попробовать свои силы, но не могут найти для них более достойного применения. Вторую группу составляют также молодые люди (чаще - студенты), которые еще не полностью овладели искусством программирования, но уже решили посвятить себя написанию и распространению вирусов. Единственная причина, толкающая подобных людей на написание вирусов, это комплекс неполноценности, который проявляет себя в компьютерном хулиганстве. Из-под пера подобных «умельцев» часто выходят либо многочисленные модификации «классических» вирусов, либо вирусы крайне примитивные и с большим числом ошибок. Став старше и опытнее, но так и не повзрослев, некоторые из подобных вирусописателей попадают в третью, наиболее опасную группу, которая создает и запускает в мир «профессиональные» вирусы. Однако другие профессионалы будут создавать и новые более совершенные антивирусные средства. Какой прогноз этого единоборства? Для того, чтобы ответить на этот вопрос следует определить, где и при каких условиях размножаются вирусы.
Основная питательная среда для массового распространения вируса в ЭВМ – это:
- слабая защищенность операционной системы (ОС);
- наличие разнообразной и довольно полной документации по OC и «железу». используемой авторами вирусов;
- широкое распространение этой ОС и этого «железа».
Хотя следует отметить, что понятие операционной системы достаточно растяжимое. Например, для макро-вирусов операционной системой являются редакторы Word и Excel, поскольку именно редакторы, а не Windows предоставляют макро-вирусам (т.е. программам на бейсике) необходимые ресурсы и функции.
Чем больше в операционной системе присутствуют элементов защиты информации, тем труднее будет вирусу поразить объекты своего нападения, так как для этого потребуется (как минимум) взломать систему шифрования, паролей и привилегий. В результате работа, необходимая для написания вируса, окажется по силам только профессионалам высокого уровня. А у профессионалов, как представляется, уровень порядочности все-таки намного выше, чем в среде потребителей их продукции, и, следовательно, число созданных и запущенных в большую жизнь вирусов будет сокращаться. Пример этому – новая операционная система Windows 2000 с модифицированной файловой системой NTFS. (Уже ближайшее будущее даст оценку усилиям разработчиков создать операционную систему с высокой степенью защищенности).
Проблема защиты информации путем ее преобразования, исключающего ее прочтение посторонним лицом, волновала человеческий ум с давних времен. История криптографии - ровесница истории человеческого языка. Более того, первоначально письменность сама по себе была криптографической системой, так как в древних обществах ею владели только избранные. Священные книги Древнего Египта, Древней Индии тому примеры.
Криптографические методы защиты информации - это специальные методы шифрования, кодирования или иного преобразования информации, в результате которого ее содержание становится недоступным без предъявления ключа криптограммы и обратного преобразования. Криптографический метод защиты, безусловно, самый надежный метод защиты, так как охраняется непосредственно сама информация, а не доступ к ней (например, зашифрованный файл нельзя прочесть даже в случае кражи носителя). Данный метод защиты реализуется в виде программ или пакетов программ
Современная криптография включает в себя четыре крупных раздела:
.
1. Симметричные криптосистемы. В симметричных криптосистемах и для шифрования, и для дешифрования используется один и тот же ключ. (Шифрование - преобразовательный процесс: исходный текст, который носит также название открытого текста, заменяется шифрованным текстом, дешифрование - обратный шифрованию процесс. На основе ключа шифрованный текст преобразуется в исходный)
2. Криптосистемы с открытым ключом. В системах с открытым ключом используются два ключа - открытый и закрытый, которые математически связаны друг с другом. Информация шифруется с помощью открытого ключа, который доступен всем желающим, а расшифровывается с помощью закрытого ключа, известного только получателю сообщения.( Ключ - информация, необходимая для беспрепятственного шифрования и дешифрования текстов.)
3. Электронная подпись. Системой электронной подписи. называется присоединяемое к тексту его криптографическое преобразование, которое позволяет при получении текста другим пользователем проверить авторство и подлинность сообщения.
4. Управление ключами. Это процесс системы обработки информации, содержанием которых является составление и распределение ключей между пользователями.
Основные направления использования криптографических методов - передача конфиденциальной информации по каналам связи (например, электронная почта), установление подлинности передаваемых сообщений, хранение информации (документов, баз данных) на носителях в зашифрованном виде.
Процесс криптографического закрытия данных может осуществляться как программно, так и аппаратно. Аппаратная реализация отличается существенно большей стоимостью, однако ей присущи и преимущества: высокая производительность, простота, защищенность и т.д. Программная реализация более практична, допускает известную гибкость в использовании. Для современных криптографических систем защиты информации сформулированы следующие общепринятые требования:
· зашифрованное сообщение должно поддаваться чтению только при наличии ключа;
· число операций, необходимых для определения использованного ключа шифрования по фрагменту шифрованного сообщения и соответствующего ему открытого текста, должно быть не меньше общего числа возможных ключей;
· число операций, необходимых для расшифровывания информации путем перебора всевозможных ключей должно иметь строгую нижнюю оценку и выходить за пределы возможностей современных компьютеров (с учетом возможности использования сетевых вычислений);
· знание алгоритма шифрования не должно влиять на надежность защиты;
· незначительное изменение ключа должно приводить к существенному изменению вида зашифрованного сообщения даже при использовании одного и того же ключа;
· структурные элементы алгоритма шифрования должны быть неизменными;
· дополнительные биты, вводимые в сообщение в процессе шифрования, должен быть полностью и надежно скрыты в шифрованном тексте;
· длина шифрованного текста должна быть равной длине исходного текста;
· не должно быть простых и легко устанавливаемых зависимостью между ключами, последовательно используемыми в процессе шифрования;