Используя эту программу, эксперт может сформировать новый протокол в течение нескольких дней. За первый год эксплуатации программы OPAL в систему ONCOCIN было добавлено свыше трех дюжин новых протоколов. Эффективность использованного в этой программе метода заполнения формуляров при вводе новых знаний во многом объясняется тем, что в программу включены базовые знания о той предметной области, в которой она используется. Конечно, включение этих знаний потребовало значительных усилий от инженеров по знаниям, которые ранее занимались общением с экспертами, но эти затраты затем с лихвой окупились. Успешное применение программы OPAL показало преимущество представления знаний о предметной области на нескольких уровнях абстракции по сравнению с подходом, предполагающим переключение основного внимания на детали реализации.
Технология извлечения знаний о предметной области у эксперта посредством опроса через терминал в последнее время стала использоваться во множестве экспертных систем. В большинстве из них эксперту предлагается заполнить экранные формуляры, информация из которых затем считывается в структурированные объекты, аналогичные фреймам. Примерами таких систем могут служить ETS. Но далеко не во всех системах такого рода имеется столь развитый графический интерфейс, как в программе OPAL, и существует возможность компилировать полученные знания непосредственно в правила принятия решений. Реализация этих возможностей в OPAL существенно облегчается особенностями структурирования планов лечения больных, на что обращали внимание и авторы этой разработки.
Опыт, приобретенный в ходе разработки программы OPAL, был затем использован при создании PROTEGE — системы более общего назначения. Последняя версия этой системы, PROTEGE-II, представляет собой комплект инструментальных средств, облегчающих создание онтологии предметной области и формирование программ приобретения знаний, подобных OPAL, для различных приложений. Вместо того чтобы разрабатывать инструментальные средства общего назначения с нуля, авторы этой разработки пошли по пути повышения уровня абстракции ранее разработанного и успешно используемого приложения, как это было сделано при разработке системы EMYCIN на основе MYCIN.
Практическим полем применения баз знаний являются экспертные системы (ЭС). Экспертная система – это система искусственного интеллекта, включающая знания об определенной слабо структурированной и трудно формализуемой узкой предметной области и способная предлагать и объяснять пользователю разумные решения. Экспертная система состоит из базы знаний, механизма логического вывода и подсистемы объяснений. Её основным компонентом является база знаний. База знаний – это семантическая модель, описывающая предметную область и позволяющая отвечать на такие вопросы из этой предметной области, ответы на которые в явном виде не присутствуют в базе. База знаний является основным компонентом интеллектуальных и экспертных систем.
Для построения базы знаний необходим интеллектуальный редактор базы знаний. Интеллектуальный редактор базы знаний – это программа, предоставляющая инженеру по знаниям возможность создавать базу знаний в интерактивном режиме. Интеллектуальный редактор включает в себя систему шаблонов языка представления знаний, подсказки и другие сервисные средства, облегчающих работу с базой.
Основной режим работы экспертной системы – консультационный режим. Консультационный режим – это интерактивный режим эксплуатации базы знаний, при котором пользователь продвигается к решению задачи.
Вторым существенным компонентом ЭС является машина логического вывода или дедуктивная машина (или блок логического вывода, или решатель). Машина логического вывода – это программа, моделирующая механизм рассуждений и оперирующая знаниями и данными с целью получения новых данных из знаний и других данных, имеющихся в рабочей памяти. Обычно машина логического вывода использует программно реализованный механизм дедуктивного логического вывода или механизм поиска решения в сети фреймов или семантической сети.
Для контакта с пользователем ЭС должна обладать подсистемой общения и подсистемой объяснений. Подсистема общения – это программа:
- входящая в состав экспертной системы;
- служащая для ведения диалога с пользователем, в ходе которого ЭС запрашивает у пользователя необходимые факты для процесса рассуждения;
- предоставляющая возможность пользователю в определенной степени контролировать и корректировать ход рассуждений экспертной системы.
Подсистема объяснений – это программа, позволяющая пользователю получить ответы на вопросы:
- "Как было получено то или иное решение?"; обычно ответ на этот вопрос представляет собой трассировку всего процесса вывода решения с указанием использованных фрагментов базы знаний; и
-"Почему было принято такое решение?"; обычно ответ на этот вопрос есть ссылка на умозаключение, непосредственно предшествовавшее полученному решению.
Хорошо если ЭС обладает подсистемой приобретения знаний. Подсистема приобретения знаний – это программа, предназначенная для корректировки и пополнения базы знаний.
Подсистема приобретения знаний - в простейшем случае - интеллектуальный редактор базы знаний. Подсистема приобретения знаний - в более сложных случаях - средства для извлечения знаний:
- из баз данных;
- из неструктурированного текста;
- из графической информации и т.д.
ЭС создаётся и существует для пользователя. Пользователь – это проблемный специалист, для которого предназначена экспертная система. Считается, что квалификация пользователя недостаточно высока, и поэтому он нуждается в помощи и поддержке своей деятельности со стороны экспертной системы.
ЭС является системой, основанной на знаниях. Система, основанная на знаниях – это система искусственного интеллекта, в которой предметные знания представлены в явном виде и отделены от прочих знаний системы.
Визуальные методы спецификации и проектирования баз знаний и разработка концептуальных структур являются достаточно эффективным гносеологическим инструментом или инструментом познания. Использование методов инженерии знаний в качестве дидактических инструментов и в качестве формализмов представления знаний способствует более быстрому и более полному пониманию структуры знаний данной предметной области, что особенно ценно для новичков на стадии изучения особенностей профессиональной деятельности.
Методы визуальной инженерии знаний можно широко использовать в различных учебных заведениях — от школ до университетов — как для углубления процесса понимания, так и для контроля знаний. Большинство учеников и студентов овладевают навыками визуального структурирования в течение нескольких
От понятийных карт к семантическим сетям
Было предложено определение поля знаний, которое позволяет инженеру по знаниям трактовать форму представления поля достаточно широко, в частности семантические сети или понятийные карты (concept maps) являются возможной формой представления. Это означает, что сам процесс построения семантических сетей помогает осознавать познавательные структуры.
Программы визуализации являются инструментом, позволяющим сделать видимыми семантические сети памяти человека. Сети состоят из узлов и упорядоченных соотношений или связей, соединяющих эти узлы. Узлы выражают понятия или предположения, а связи описывают взаимоотношения между этими узлами. Поэтому разработка семантических сетей подразумевает анализ структурных взаимодействий между отдельными понятиями предметной области.
В процессе создания семантических сетей эксперт и аналитик вынуждены анализировать структуры своих собственных знаний, что помогает им включать новые знания в структуры уже имеющихся знаний. Результатом этого является более осмысленное использование приобретенных знаний.
Визуальные спецификации в форме сетей могут использоваться новичками и экспертами в качестве инструментов для оценки изменений, произошедших в их мышлении. Если согласиться, что семантическая сеть является достаточно полным представлением памяти человека, то процесс обучения с этой точки зрения можно рассматривать как реорганизацию семантической памяти.
Kozma, один из разработчиков программы организации семантической сети Learning Tool, считает, что эти средства являются инструментами познания, усиливающими и расширяющими познания человека. Разработка семантических сетей требует от учеников:
· реорганизации знаний;
· исчерпывающего описания понятий и связей между ними;
· глубокой обработки знаний, что способствует лучшему запоминанию и извлечению из памяти знаний, а также повышает способности применять знания в новых ситуациях;
· связывания новых понятий с существующими понятиями и представлениями, что улучшает понимание;
· пространственного изучения посредством пространственного представления понятий в изучаемой области.
Полезность семантических сетей и карт понятий, пожалуй, лучше всего демонстрируется их связями с другими формами мышления высшего порядка. Они тесно связаны с формальным обоснованием в химии и способностью аргументировать свои высказывания в биологии. Также было показано, что семантические сети имеют связь с выполнением исследований.