Смекни!
smekni.com

Устройство дистанционного управления (стр. 1 из 6)

Слово "компьютер" означает вычислитель, то есть устройство для вычислений.

Потребность в автоматизации обработки данных, в том числе вычислений, возникла

очень давно. В 1642г. Б. Паскаль изобрел устройство, механически выполняющее

сложение чисел, а в 1763 Г. Лейбниц сконструировал арифмометр, позволяющий

механически выполнять четыре арифметических операции. Начиная с 19-го века,

арифмометры получили очень широкое применение. Существовала и специальная

профессия счетчик-человек, работающий с арифмометром, быстро и точно соблюдающий

определенную последовательность инструкций. Такую последовательность инструкций

в последствии стали называть программой. Но многие расчеты производились очень

медленно – даже десятки счетчиков должны были работать по несколько недель.

Причина проста – человек выбирающий действия весьма ограничен в скорости.

В первой половине 19-го века математик Ч. Беббидж попытался построить

универсальное вычислительное устройство – аналитическую машину, которая должна

была выполнять вычисления без участия человека. Для этого она должна была уметь

исполнять программы, вводимые с помощью перфокарт (карт из плотной бумаги с

информацией, наносимой с помощью отверстий). и иметь склад для запоминания

данных и промежуточных результатов (в современной терминологии – память). Бебидж

не смог до конца довести работу по созданию Аналитической машины – она оказалась

слишком сложная для техники того времени, однако он разработал все основные

идеи. В 1943 американец Г. Эйкен с помощью работ Бебиджа на основании техники

20-го века – электромеханических реле – смог построить на предприятии фирмы IBM

такую машину под названием "МАРК-1".

К тому времени потребность в автоматизации вычислений (в том числе для военных

нужд – баллистики, криптографии и т.д.) стала настолько велика, что над

созданием машин типа построенных Эйкеном одновременно работало несколько групп

исследователей. Начиная с 1943 г. Группа специалистов под руководством Джона

Мочли в США начала конструировать машину уже на основе электронных ламп, а не

реле. Их машина названная ENIAC, работа в 1000 раз быстрее чем МАРК-1, однако

для задания ее программы приходилось в течение нескольких часов или даже дней

подсоединять нужным образом провода. Специалисты начали конструировать машину,

которая могла бы хранить программу в своей памяти.

Компьютеры 40-х и 50-х годов были очень большими устройствами, – огромные залы

были заставлены шкафами с электронным оборудованием. Все это стоило очень

дорого, поэтому компьютеры были доступны только крупным фирмам. Первый шаг к

уменьшению размеров компьютеров был сделан с изобретением в 1948 г.

транзисторов, которые смогли заменить в компьютерах лампы. И уже во второй

половине 50-х годов появились машины на основе транзисторов. Единственное место

где транзисторы не смогли заменить лампы- это блоки памяти, но там вместо ламп

стали использовать схемы памяти на магнитных сердечниках. В 1965 г. Фирме

Digital Equipment удалось выпустить мини-компьютер размером с холодильник и

стоимостью 20.000$.

Следующий шаг в миниатюризации компьютеров- изобретение интегральных микросхем

или чипов. Затем прогресс компьютеров стал очень стремительным. Вот основные

вехи в эволюции современных компьютеров:

1978г.- Intel процессор 8086

1979г.- Intel процессор 8088

1981г.- IBM PC с процессором 8088

1984г.- IBM PC AT с процессором 80286

1985г.- Microsoft Windows

1988г.- Intel 80386SX

1989г.- Intel 486DX

1990г.- PC с процессором 486DX/25

1992г.- Intel 486DX2

1993г.- Intel Pentium

1995г.- Intel Pentium Pro

1998г.- процессор Pentium с тактовой частотой 600 Мгц

Стремительные темпы компьютеризации всех сторон человеческой деятельности

привели к тому, что сегодня компьютеры, и, прежде всего персональные ЭВМ, стали

непременным атрибутом самых различных технических комплексов. Это касается и

современных систем управления и сбора данных, контрольно-измерительного и

лабораторного оборудования, т.е. любых комплексов, основной задачей которых

является обработка и интерпретация информации, поступающей из "внешнего мира".

Сегодня практически все системы такого рода, за исключением сугубо

специализированных систем, построенных на основе специализированных процессоров,

оснащены персональными компьютерами на процессорах ведущих мировых

производителей, в том числе и Intel. В результате, перед разработчиками и

пользователями любой подобной системы встает задача адекватной стыковки

устройств, которые воспринимают информацию из внешнего мира (датчиков различного

типа), с персональным компьютером, являющимся центральным узлом такой системы.

Компьютер выполняет задачи координации работы системы, обработки поступающей

информации и выдачи ее пользователю в наиболее удобной для него форме.

МЕТОДЫ И СИСТЕМЫ ДИСТАНЦИОННОГО УПРАВЛЕНИЯ.

Внедрение электронных средств регулировки параметров, характеристик и режимов

передатчика позволяет осуществлять управление передатчиком на расстоянии. Такое

управление, называемое дистанционным, широко используется в профессиональных

передатчиках.

Дистанционное управление радиовещательным передатчиком, находящимся в соседнем

помещении или в этом же, но на расстоянии в несколько десятков метров, создает

для обслуживающего персонала повышенные удобства. Не подходя к передатчику,

оператор имеет возможность включить и выключить передатчик, настроить его на

нужную частоту, переключить источник сигнала, и т.д.

В радиовещательных передатчиках для дистанционного управления используются

ультразвуковые, инфракрасные колебания или управление с помощью линий связи.

Структурная схема дистанционного управления с использованием источника

инфракрасного колебания

Рис 1.

Структурная схема дистанционного управления с использованием источника

инфракрасного излучения показана на рис.1, Необходимая для управления

передатчиком информация набирается оператором на пульте управления ПУ, сигналы

управления с его выхода после преобразования связи устройством кодирования УК

подаются на фотодиод ФД (излучатель), излучающий инфракрасные импульсы в

направлении фототранзистора ФТ, находящегося на управляемом передатчике.

Принятые фототранзистором импульсы усиливаются и декодируются в устройстве

декодирования УД, с выхода которого сигналы управления поступают на

соответствующие цепи регулировок передатчика. В передатчике с микропроцессорным

управлением пульт может частично или полностью дублировать панель управления

передатчика. Инфракрасные колебания хорошо поглощаются стенами помещения и

расположенной в нем мебелью, при этом практически не создаются мешающие

воздействия устройствам, находящимся в других помещениях.

Системы ДУ на ультразвуковых колебаниях действуют по такому же принципу.

Дистанционное управление передатчиком с помощью линий связи. управления

рассмотрим на примере управления передатчиком декаметрового диапазона. В таких

РПДУ контроль и управление его работой производится из диспетчерского пункта

(ДП), находящегося от передатчика на некотором расстоянии, что повышает

оперативность радиосвязи за счет управления передатчиком с помощью ЭВМ по

заранее заданной программе, а при работе передатчика на необслуживаемых

радиостанциях сокращает обслуживающий персонал.

Радиопередатчик, находящийся на значительном расстоянии (например, много

километров) от оператора или ЭВМ, управляется путем односторонней либо

двусторонней передачи информации.

В первом случае передаются только команды телеуправления (ТУ); во втором для

контроля за работой передатчика организуется обратный канал связи для передачи

информации телесигнализации (ТС).

При дистанционном управлении для каждого органа управления РПДУ

предусматривается либо отдельная линия связи, либо число линий связи меньше

числа объектов управления. В первом случае сигналы передаются с помощью

параллельного кода, во втором случае происходит уплотнение канала связи, и

сигналы передаются с помощью последовательных кодов.

Структурная схема систем телеуправления и телеконтроля

Рис 2.

Система телеуправления и телеконтроля РПДУ состоит из устройств, устанавливаемых

на диспетчерском пункте, канала связи и устройств, устанавливаемых на РПДУ (рис.

2). В блоке вывода на ДП передаваемая информация преобразуется (кодируется и

модулируется) в форму, пригодную для передачи по линии связи к управляемому

РПДУ, содержащему в блоке ввода обратные преобразователи, декодирующие и

демодулирующие устройства. Блок ввода передает информацию от ДП передатчику, а

также вызывает срабатывание визуальных или слуховых индикаторов на передней

панели передатчика; блок вывода снимает информацию с РПДУ для передачи на ДП.

Если необходимо осуществлять управление большим числом передатчиков, для

повышения эффективности канала связи используют общий канал для передачи

сообщений всем РПДУ, т.е. осуществляют уплотнение одного канала связи вторичными

каналами. В основном применяются системы с кодовым разделением каналов, в

которых в каждом вторичном канале, по которому производится управление

конкретным передатчиком, передается специальная кодовая комбинация. На приемной

стороне сигналы с линии связи от ДП параллельно подаются на дешифраторы

передатчиков. Если кодовая комбинация после дешифровки соответствует комбинации,

присвоенной данному РПУД (его адресу), то сигналы ТУ воздействуют на этот

передатчик. При этом либо сам адресный код несет в себе команду ТУ для

передатчика, либо адрес и команды ТУ передаются поочередно. Кодовая комбинация,