Смекни!
smekni.com

Машинная память (стр. 8 из 11)

Структурная схема оптической памяти с побитовой записью информации показана на рис. 6. Основными компонентами системы являются лазерный источник излучения, модулятор, дефлектор для адресации луча, формирующая и фокусирующая оптика и запоминающая среда.

Рис. 6. Структурная схема оптического ЗУ с побитовой записью информации

Помимо более сложной оптики в голографической системе памяти требуется два существенных дополнительных элемента - устройство формирования массивов (страниц) информации, называемое управляемым транспарантом (УТ), и фотоприемная матрица. В голографическом ЗУ с постраничной записью лазерный луч расщепляется на два пучка - опорный и сигнальный. Сигнальный луч, проходя через управляемый транспарант, поступает на носитель информации, где взаимодействует с опорным пучком, образуя интерференционную картину, которая фиксируется в регистрирующей среде. Каждое положение отклоняемого луча используется для адресации целой страницы.

При считывании сигнальный луч блокируется затвором; опорный пучок становится считывающим и проецирует восстановленное изображение страницы информации на матрицу приемников. В результате при считывании целая страница информации сразу же оказывается доступной для электронной выборки. Оптическая система обеспечивает совпадение опорного и сигнального лучей в записывающей среде и поворот сигнального луча относительно УТ при записи по разным адресам.

Оптоэлектронные устройства памяти

Оптоэлектроника основана на применении как электрических, так и оптических методов обработки информации и рассматривает методы и устройства преобразования электрических сигналов в световые и обратно, исследует процессы получения, передачи, обработки и хранения информации, переносимой светом.

Существенная особенность оптоэлектронных устройств состоит в том, что элементы в них оптически связаны, а электрически - изолированы.

В цепях с обычными приборами вакуумной и полупроводниковой электроники невозможна эффективная развязка между входом и выходом, что связано с наличием у электрона электрического заряда. Оптическая же связь, осуществляемая с помощью фотонов, может быть реализована между участками схемы со значительно различающимися потенциалами; в оптоэлектронных устройствах осуществляется эффективная развязка между входом и выходом. Кроме того, оптоэлектронным устройствам присущи и другие достоинства: возможность пространственной модуляции световых пучков и значительного ветвления и пересечения световых пучков в отсутствие гальванической связи между каналами; большая функциональная нагрузка световых пучков, обусловленная большой вариабельностью их параметров (амплитуды, направления, частоты, фазы, поляризации).

Оптоэлектронные приборы. В состав оптоэлектронных устройств входит несколько видов приборов, которые связаны между собой и обеспечивают хранение и выдачу информации в зависимости от потребностей.

Основным структурным элементом оптоэлектронных устройств является оптрон - прибор, состоящий из источника и приемника света, связанных оптически. Поскольку схемотехнические возможности оптрона определяются главным образом характеристиками фотоприемника, этот элемент и дает название оптрона в целом. К важнейшим разновидностям элементарных оптронов относятся: транзисторные, диодные, резисторные и тиристорные (рис. 7).

Функциональные возможности оптрона могут быть существенно расширены при введении обратных связей (электрических или оптических). Наиболее известен оптрон, в котором приемник и излучатель соединены электрически, а также имеется оптическая положительная обратная связь. Такое устройство, получившее название регенеративного оптрона, пригодно для использования в качестве переключателя, усилителя, генератора как электрических, так и световых сигналов.

Рис. 7. Элементарные оптроны:

а — резисторный: б—диодный; в—транзисторный; г — тирис-торный; д — резисторный с электролюминесцентным конденсатором

Для осуществления в оптоэлектронных устройствах широкой и гибкой системы оптических связей часто применяют волоконную оптику.

Оптические волокна представляют собой эффективные световоды, обеспечивающие передачу излучения по заданному пути; их можно группировать в пучки любой формы и изгибать под любыми углами.

Волокнистые световоды исключают необходимость в фокусирующих и отклоняющих системах. Поэтому оптоэлектронные ЗУ могут иметь многоплатную конструкцию, причем каждая плата имеет свои источники света и свои фотоприемники, число которых равно количеству битов хранимой информации.

Оптоэлектроника предъявляет к источникам света такие требования, как миниатюрность, малая потребляемая мощность, высокие эффективность и надежность, большой срок службы, технологичность. Они должны обладать высоким быстродействием, допускать возможность изготовления в виде интегральных устройств. Планарная технология интегральных схем позволяет создавать миниатюрные устройства с расщеплением излучения, сформированные вместе с электронными схемами управления. Ячейки матриц излучателей и фотоприемников могут обладать памятью.

Наиболее распространенными элементами матриц некогерентных источников света являются инжекционные светодиоды, в которых испускание света определяется механизмом рекомбинации электронов и дырок. В качестве материалов для светодиодов используют арсенид и фосфид галлия, карбид кремния, твердые растворы арсенида галлия—алюминия и т.д.

Перспективными источниками света являются инжекционные лазеры, позволяющие получать высокую плотность энергии в узкой спектральной области при высоких КПД и быстродействии (десятки пикосекунд). Заметим, что быстродействие светодиодов ~0,5 мкс. Инжекционные лазеры можно изготовлять в виде матриц на одном базовом кристалле по той же технологии, что и интегральные микросхемы.

Для преобразования световых сигналов в электрические используют фотодиоды, фоторезисторы, фототранзисторы и другие приборы. Их можно использовать и для изготовления интегральных матриц, которые могут иметь координатную организацию, позволяющую выбирать любой, но только один, фотоприемник в определенный момент времени, могут быть организованы построчно (по словам), в несколько регистров или с самосканированием.

Матрицы фотоприемника кроме светочувствительных элементов содержат коммутирующие элементы, а в некоторых случаях и элементы памяти. Простейшая ячейка содержит фотодиод и последовательно включенную емкость. Запоминание информации в матрице фотодиодов реализуется в виде накопления зарядов на емкостях фотодиодов.

Память на устройствах функциональной электроники

Функциональная электроника - новое направление в микроэлектронике

Современная электроника твердого тела в значительной степени является интегральной электроникой; в основе ее лежит принцип элементной (технологической) интеграции—изготовление на одном кристалле большого количества электронных приборов, соединенных между собой в электрическую схему.

Схемотехнический путь развития интегральной электроники неизбежно связан с ростом числа элементов и межэлементных соединений по мере усложнения выполняемых интегральной схемой функций. Однако чисто количественное наращивание степени интеграции и связанное с этим уменьшение размеров элементов имеет определенные пределы. Анализ традиционных путей развития интегральной электроники показывает, что в настоящее время достигнут настолько высокий уровень интеграции, что приходится считаться с рядом физических и технологических ограничений при его дальнейшем повышении. Только интегрализация элементов на определенном этапе уже не обеспечивает достижения положительных результатов.

Функциональная электроника предлагает качественно новый подход. В основе лежит принцип физической интеграции, позволяющий реализовать определенную функцию аппаратуры без применения стандартных базовых элементов, основываясь непосредственно на физических явлениях в твердом теле. В этом случае локальному объему твердого тела придаются такие свойства, которые требуются для выполнения данной функции, так что промежуточный этап представления желаемой функции в виде эквивалентной схемы не требуется.

При физической интеграции носителем информации является не состояние некоторой схемы, созданной на основе традиционных элементов (транзисторов, диодов, резисторов и т. д.), а состояние локального объема в однородной активной среде с динамически изменяемыми параметрами. Изменения состояния локального объема однородного материала достигаются не технологическими, а физическими способами, например инжекцией зарядов в локальный объем с помощью светового излучения либо воздействием электрических или магнитных полей, возбуждением поверхностных волн и т. д.

Таким образом, основной чертой физической интеграции является отсутствие или значительное снижение удельного веса схемотехники и использование динамических неоднородностей для выполнения определенных функций. Запись и обработку информации выполняет не схема, включающая в себя множество приборов и элементов, а сама активная среда, в которой накапливается подвергаемая обработке информация.

Любой прибор традиционной электроники сам по себе накапливать информацию не может. Так, в элементе памяти на триггере запись информации осуществляется не самим транзистором, входящим в состав схемы, а всей схемой триггера, содержащей как минимум два транзистора. Запись и обработка сигнала непосредственно в приборах традиционной электроники не осуществляются — эти функции выполняет схема, включающая в себя множество приборов. Активная среда устройств функциональной электроники обладает двумя характерными свойствами: в ней может храниться и обрабатываться большой объем информации; управление ею обеспечивает изменения алгоритма обработки сигнала. С этой точки зрения устройства функциональной электроники по своим отличительным признакам близки к процессору ЭВМ, реализуемому в виде интегральных схем на традиционных транзисторных структурах. Заметим, что во многих случаях устройства функциональной электроники могут хорошо сочетаться с цифровыми ИС, дополняя и расширяя их возможности.