Смекни!
smekni.com

зно математика 2007 с ответами (стр. 3 из 4)

Примітка.Враховуючи, що чинні підручники з математики для загальноосвітніх навчальних закладів по-різному тлумачать ситуацію, коли рівняння мають кратні корені, відповідь 8 також є правильною.

Розв’язання.

Знайдемо область визначення:

Рівняння

рівносильне сукупності рівнянь:

звідси:

Рівняння має чотири корені, з яких два рівні між собою. Корінь

не входить в область визначення. Тому 3+3+5=11.
    Розв’яжіть систему рівнянь

Запишіть у відповідь добуток

, якщо пара
є розв’язком вказаної системи рівнянь.

Правильна відповідь :

Компоненти програмових вимог, що перевіряються завданням: Розв’язування систем рівнянь, у яких одне рівняння показникове, а інше ─ логарифмічне.

    Середній вік одинадцяти футболістів команди становить 22 роки. Під час гри одного з футболістів було вилучено з поля, після чого середній вік гравців, що залишилися, став 21 рік. Скільки років футболісту, який залишив поле?

Правильна відповідь : 32.

Компоненти програмових вимог, що перевіряються завданням: Статистичні характеристики рядів даних: середнє значення випадкової величини.

    Обчисліть

Правильна відповідь : 4.

Компоненти програмових вимог, що перевіряються завданням: Тотожні перетворення логарифмічних виразів.

    Знайдіть найбільше ціле значення параметра а, при якому система рівнянь
    має два розв’язки.

Правильна відповідь : 1.

Компоненти програмових вимог, що перевіряються завданням: Розв’язування систем рівнянь з параметрами графічно.

    Знайдіть найбільше значення функції
    на проміжку
    .

Правильна відповідь : 2.

Компоненти програмових вимог, що перевіряються завданням: Дослідження функції за допомогою похідної.

    Знайдіть найменше ціле значення параметра а, при якому рівняння
    має корені.

Правильна відповідь :

Компоненти програмових вимог, що перевіряються завданням: Розв’язування рівнянь з параметрами.

    Сторона рівностороннього трикутника АВС дорівнює 5 см. Знайдіть скалярний

добуток

.

Правильна відповідь : 12,5.

Компоненти програмових вимог, що перевіряються завданням: Скалярний добуток векторів.

    Для опалювальної системи будинку необхідні радіатори із розрахунку: три одиниці на 50м3. Яку кількість одиниць радіаторів треба замовити, якщо новий будинок має форму прямокутного паралелепіпеда розміру 15м×18м×25м?

Правильна відповідь : 405.

Компоненти програмових вимог, що перевіряються завданням: Задачі прикладного змісту на знаходження об’єму фігур: об’єм прямокутного паралелепіпеда.

35. Апофема правильної чотирикутної піраміди дорівнює 2

см і нахилена під кутом
до площини основи. Знайдіть об’єм піраміди.

Правильна відповідь : 12

.

Компоненти програмових вимог, що перевіряються завданням: Знаходження об’єму фігури, використовуючи теореми планіметрії: об’єм піраміди.

Частина 3

ЗАВДАННЯ ВІДКРИТОЇ ФОРМИ З РОЗГОРНУТОЮ ВІДПОВІДДЮ

36. У правильній чотирикутній піраміді SABCD (S – вершина) бічне ребро вдвічі більше сторони основи. Знайдіть кут між медіаною трикутника SDC, проведеною з вершини D, та середньою лінією трикутника ASC, що паралельна основі піраміди.

Правильна відповідь :

.

Розв’язання (авторський варіант)

Нехай SABCD – задана правильна піраміда, в основі якої лежить квадрат ABCD, і SOїї висота. Позначимо сторону основи АВ через а, тоді бічне ребро SA = 2a.

У трикутнику SDC з вершини D проведемо медіану DN, N – середина ребра SC. У трикутнику ASC проведемо середню лінію, паралельну AC. Вона перетинає ребра SA та SCу точках М та N відповідно, AM = MS та SN = NC (за означенням середньої лінії). Оскільки АС лежить у площині ABC і MN || AC, то MN || (ABC). Прямі MN та ND перетинаються в точці N, тому кут MND є шуканим кутом між медіаною DN трикутника SDC і середньою лінією MN трикутника ASC. Позначимо

.

Діагональ АС квадрата АВСD дорівнює

, тому середня лінія MN =
.

Висота SO піраміди перетинає MN в точці L. Оскільки трикутники ASC і SMN є рівнобедреними, то АО = ОС і ML = LN =

.

З прямокутного трикутника

.

За теоремою Фалеса SL = LO =

SO =
.

З прямокутного трикутника

.

Трикутник DNM рівнобедрений, оскільки DM = DN як медіани рівних трикутників SAD та SCD. Медіана DL є висотою. Отже, трикутник DLN є прямокутним.

З трикутника DLN маємо:

.

Відповідь.

.

Схема оцінювання

1. За правильно побудований рисунок до задачі з обґрунтуванням паралельності відповідної середньої лінії до основи учень одержує 1 бал.

2. За обгрунтування рівності двох сторін трикутника MND (DM=DN) учень одержує ще 1 бал.

3. Якщо учень правильно знайшов елементи трикутника DLN, необхідні для знаходження кута

, він одержує ще 1 бал.

4. За правильну відповідь учень одержує ще 1 бал.

Таким чином, за правильно розв’язану задачу учень одержує 4 бали.

· Якщо учень не з’єднує точки М і Д на рисунку, а розглядає кут

як кут трикутника DLN, то в цьому випадку треба обґрунтувати, що трикутник DLN – прямокутний. Тоді має місце така схема оцінювання :

1. За правильно побудований рисунок до задачі з обґрунтуванням паралельності відповідної середньої лінії до основи учень одержує 1 бал.

2. За обґрунтування того, що

учень одержує ще 1 бал.

3. Якщо учень правильно знайшов елементи трикутника DLN, необхідні для знаходження кута

, він одержує ще 1 бал.

4. За правильну відповідь учень одержує ще 1 бал.

Таким чином, за правильно розв’язану задачу учень одержує 4 бали.

· Якщо учень для розв’язування задачі використав векторно-координатний метод, то тоді має місце така схема оцінювання:

1. За правильне обґрунтування висоти SO учень одержує 1 бал.

2. За вибір системи координат з поясненням необхідних точок учень одержує ще 1 бал.

3. За обчислення координат цих точок учень одержує ще 1 бал.

4. За правильну відповідь учень одержує ще 1 бал.

Таким чином, за правильно розв’язану задачу учень одержує 4 бали.

37. Побудуйте графік функції

.

Розв’язання

Знаходимо область визначення функції, тобто розв’язуємо нерівність

Отже,
.