При сложности моделируемых явлений, обязанных воздействию множества факторов (в том числе неизвестных), их «поверхности» заменяются приближенными (аппроксимирующими), выражаемыми в математической форме аппроксимирующими функциями, которые обычно представляют в виде разложений. Неизвестная функция
z=f(u, v), (4)
где u b v - координаты точек на карте в любой системе координат (х, у; φ, λ и т.д.), например, записывается в виде степенного ряда
z=f(u, v) =A +Bu+ Сv+Du2+Еuv +Fv2+Gи3+Нu2v+...+Тumvm (5)
с неизвестными коэффициентами А, В, С, ... Для определения этих коэффициентов решается система уравнений (5), число которых равно или превышает число искомых коэффициентов (в последнем случае с привлечением способа наименьших квадратов). Значения z, u и v для составления отдельных уравнений берутся непосредственно с карты, например в вершинах квадратной сетки. Очевидно, многочлен первой степени, определяющий аппроксимирующую поверхность как плоскость, дает для сложной поверхности лишь самое грубое приближение. Аппроксимация уточняется с повышением степени многочлена. Несложные поверхности удовлетворительно описываются кубическими и даже квадратными уравнениями. Разложения, возможно, выполнить также посредством тригонометрических рядов Фурье или, что особенно удобно для практических целей, в виде суммы произведений ортогональных многочленов П. Л. Чебышева.
Математическое моделирование удобно применять для определения площадей и объемов, сопоставления поверхностей, например, при изучении корреляции явлений, и т. п.
Приемы математической теории информации находят применение для объёктивной оценки по картам пространственной однородности (или дифференциации) явлений и их взаимного соответствия. Основная функция теории информации - энтропия используется как показатель неоднородности картографического изображения (не однородности геоморфологического строения, почвенного или растительного покрова, структуры угодий, расселения и т. п.) и, следовательно, как показатель пространственных различий явлений. При этом энтропия может подсчитываться не только для явлений, характеризованных на карте в числовой форме, но также для лишенных количественных характеристик, например для растительных сообществ, ареалов животных и т. п.
Проведенный выше раздельный обзор основных способов анализа, используемых в картографическом методе исследования, позволяет яснее видеть пути его применения. Но в практике обычно совместное применение различных способов. Например, предварительный визуальный анализ полезен для выбора рациональной методики картометрических работ, результаты которых могут быть далее обобщены. В графических построениях, в частности в виде гипсографических кривых, и т. п. Комплексирование различных способов не только обогащает методику работы, но и расширяет возможности картографического метода.
Некоторые способы анализа (визуальный, графический, картометрический) имеют длительную историю, но математические способы, требующие сплошь и рядом обширных вычислений, оказались реальными лишь после внедрения электронно-вычислительных машин в практику картографического метода. Новая вычислительная техника преимущественно применяется для автоматической обработки данных снятых с карты «ручным» способом, например для решения системы уравнений, полученных в результате ручных измерений по карте.
Вместе с тем для успешного использования любого способа, особенно математического, необходимы анализ, истолкование и контроль получаемых результатов, их содержательная (географическая) интерпретация. Взаимосвязанное применение способов облегчает решение этой задачи.
Современный этап в автоматизации картографического метода исследования состоит в разработке устройств, позволяющих автоматизировать получение по картам исходных данных для передачи их в электронно-вычислительные машины, либо автоматических устройств, полностью решающих конкретные задачи картографического метода, например по автоматическому определению площадей по картам.
Совместное использование и переработка карт при картографическом методе исследования
При картографическом методе исследования возможны различные варианты использования карт: непосредственный анализ отдельны карт; анализ сопряженных карт разной тематики; сопоставление раз - современных карт; сравнительное изучение карт-аналогов; анализ, связанный с преобразованием картографического изображения; разложение картографического изображения на составляющие и т.д.
Особенности и возможности использования карт при картографическом методе во многом зависят от характера самих карт и целей исследования. Взгляд на карты как на пространственные модели геосистем проясняет влияние типа карт. Отраслевая карта, содержание которой ограничено одним из элементов геосистемы или даже его отдельным признаком, допускает лишь изучение пространственного размещения этого элемента (или признака), если необходимо с его количественными характеристиками (величины, интенсивности и т. п.). Комплексная карта, объединяющая ряд элементов геосистемы, открывает путь к исследованию их взаимосвязей и функционирования и, следовательно, сильно расширяет возможные пределы исследования.
Но полную силу комплексное картографирование приобретает в сериях карт, что определяет большую эффективность. совместного анализа сопряженных карт геосистем.
Наиболее доступен и распространен непосредственный анализ отдельных карт способам. При отсутствии специальной подготовки, технических средств или достаточного времени иногда ограничиваются визуальным изучением карты. Оно одинаково применимо для малых и больших пространств и, несмотря на свою простоту, может приводить опытного исследователя к многим интересующим его выводам. Например, топографические карты хорошо выявляют структуру гидрографической сети, типы рельефа, характер сельскохозяйственного расселения его связь с природными условиями и т. д. В глобальном масштабе благодаря визуальному анализу были открыты и изучены явления широтной зональности, а также выдвинуты предположения о меридиональных и секторальных закономерностях, обнаруживаемых на тектонических, морфоструктурных, климатических, почвенных и геоботанических картах земного шара. Привлечение других способов анализа обычно расширяет спектр выводов и, главное, усиливает их доказательность. Эти возможности возрастают еще более при совместном использовании ряда карт, а также при целенаправленном преобразовании их содержания и способов изображения.
Совместный анализ карт разной тематики широко используется для изучения пространственных связей и зависимостей, например между рельефом, почвами и растительностью. Он позволяет устанавливать пространственное соответствие явлений и тем самым дает конкретным наукам и практике основу для дальнейших исследований по выявлению причинно-следственных связей. Очень продуктивен совместный анализ карт заведомо взаимосвязанных явлений, например осадков, поверхностного стока и испаряемости, позволяющий приходить к заключениям о водном балансе территории, ее увлажнении, пополнении подземных вод и т. д. Важно, что карты представляют хорошие возможности для изучения взаимосвязей, непосредственно в натуре не наблюдаемых, например климатических условий и заболеваемости населения. Массу иллюстраций возможностей совместного анализа карт дает Атлас океанов (1974-1980). Например, сопоставление карт физических свойств водных масс Мирового океана с биогеографическими картами позволяет установить зависимость локализации растительных и животных организмов от определенных температурных и гидрохимических условий.
Простейший способ сопоставления карт - визуальный. Более точный результат дает совмещение карт, например при помощи оптического проектора. Чтобы облегчить совмещение, сопряженные карты можно печатать на прозрачных пластиках, накладываемых друг на друга. Подобные приемы открывают непосредственно полное или частичное совпадение явлений, их обратные соотношения, систематические смещения и т. п. Количественные характеристики взаимосвязей, в частности, взаимозависимостей, не являющихся строго функциональными (их называют корреляциями), можно находить приемами математической статистики по выборкам с сопряженных карт.
Совместный анализ разновременных карт, показывающих изменения в пространственном положении и состоянии явлений, открывает путь к изучению динамики и развития исследуемых геосистем или их элементов. Это могут быть карты, отображающие действительность на момент их изготовления (например, топографические карты по съемкам разных лет), либо карты, составленные по разновременным источникам, например по переписям населения, проводимым каждое десятилетие. Интервалы разновременных карт устанавливаются сообразно характеру исследуемых явлений: при анализе синоптических процессов по картам интервалы ограничиваются часами, а при изучении вековых движений земной коры возрастают до десятков лет или даже до столетий. При сопоставлении разновременных‚ карт выявляются: изменения в пространственном положении явлений, например перемещения береговой линии, ареалов расселения животных и т. п.; изменения в состоянии явлений, например, рост населенных пунктов, повышение класса дорог и т. п.; замещения одних явлений другими (распашка целинных земель, смена породного состава лесов и т. п.); ритмы, сезонных и других периодических явлений; общие тенденции развития явлений. При этом возможно не только измерять по картам абсолютные величины пространственных изменений, но также определять их направления, средние скорости и некоторые другие характеристики.
Сравнительное изучение карт-аналогов, т. е. карт, изображающих территории, сходные в каких-либо свойствах или отношениях, позволяет переносить с некоторой долей вероятности знания, полученные для доступных и хорошо изученных пространств на менее доступные и изученные. Например, выявление по картам таежной зоны СССР и Канады сходных ландшафтов допускает в качестве гипотезы экстраполяцию закономерностей, найденных для ландшафтов СССР, на аналогичные ландшафты Канады. Подобная методика заслуживает внимания при прогнозировании природных явлений в труднодоступных районах земного шара или при проектировании мер борьбы с неблагоприятными условиями окружающей среды - вечной мерзлотой, сейсмичностью и т. д.