Смекни!
smekni.com

Топографическая карта с точки зрения географии (стр. 2 из 3)

Азимутальную равновеликую проекцию называют также стереографической. Она получается проведением лучей из некоторой фиксированной точки поверхности Земли на плоскость, касательную к поверхности Земли в противолежащей точке.

Особый вид азимутальной проекции — гномоническая. Она получается проведением лучей из центра Земли к некоторой касательной к поверхности Земли плоскости. Гномоническая проекция не сохраняет ни площадей, ни углов, но зато на ней кратчайший путь между любыми двумя точками (т. е. дуга большого круга) всегда изображается прямой линией; соответственно меридианы и экватор на ней изображаются прямыми линиями.

Псевдоконические проекции.

В псевдоконических проекциях параллели изображаются дугами концентрических окружностей, один из меридианов, называемый средним — прямой линией, а остальные — кривыми, симметричными относительно среднего.

Примером псевдоконической проекции может служит равновеликая псевдоконическая проекция Бонна.

Псевдоцилиндрические проекции.

В псевдоцилиндрических проекциях все параллели изображаются параллельными прямыми, средний меридиан — прямой линией, перепендикулярной параллелям, а остальные меридианы — кривыми. Причём средний мередиан является осью симметрии проекции.

Поликонические проекции.

В поликонических проекциях экватор изображается прямой, а остальные параллели изображаются дугами эксцентрических окружностей. Меридианы изображаются кривыми, симметричными относительно центрального прямого меридиана, перпендикулярного экватору.

Кроме вышеперечисленных встречаются и другие проекции, не относящиеся к указанным видам.

2. Геометрическая сущность и математическая основа карт.

Фигура Земли как планеты издавна интересовала ученых. Для геодезистов установление ее фигуры и размеров является одной из основных задач.

На вопрос "Какую форму имеет Земля?" большинство людей отвечает: "Земля имеет форму шара!". Действительно, если не считать гор и океанических впадин, то Землю в первом приближении можно считать шаром. Она вращается вокруг оси и согласно законам физики должна быть сплюснута у полюсов, поэтому во втором приближении Землю принимают за эллипсоид вращения. В специальных исследованиях ее считают трехосным эллипсоидом.

На поверхности Земли встречаются равнины, котловины, возвышенности и горы разной высоты; если же принять во внимание рельеф дна озер, морей и океанов, то можно сказать, что форма физической поверхности Земли очень сложная. Для ее изучения можно применить широко известный способ моделирования, с которым школьники знакомятся на уроках информатики.

При разработке модели какого-либо объекта или явления учитывают только его главные характеристики, имеющие значение для успешного решения данной конкретной задачи; все другие характеристики, как несущественные для данной задачи, во внимание не принимаются.

В модели шарообразной Земли поверхность Земли имеет сферическую форму; здесь важен лишь радиус сферы, а все остальное - морские впадины, горы, равнины – несущественно. В этой модели используется геометрия сферы, теория которой сравнительно проста и очень хорошо разработана.

Модель эллипсоида вращения имеет две характеристики: размеры большой и малой полуосей. В этой модели используется геометрия эллипсоида вращения, которая намного сложнее геометрии сферы, хотя разработана также достаточно подробно.

Если участок поверхности Земли небольшой, то иногда оказывается возможным применить для этого участка модель плоской поверхности; в этой модели применяется геометрия плоскости, которая по сложности (а точнее, по простоте) несравнима с геометрией сферы, а тем более с геометрией эллипсоида.

В одном из учебников по высшей геодезии написано: "Понятие фигуры Земли неоднозначно и имеет различную трактовку в зависимости от использования получаемых данных". При решении геодезических задач можно иногда считать поверхность участка Земли либо частью плоскости, либо частью сферы, либо частью поверхности эллипсоида вращения и т.д.

Какое направление вполне однозначно и очень просто можно определить в любой точке Земли без специальных приборов? Конечно же, направление силы тяжести; стоит подвесить на нить груз, и натянутая нить зафиксирует это направление. Именно это направление является в геодезии основным, так как оно существует объективно и легко и просто обнаруживается. Направления силы тяжести в разных точках Земли непараллельны, они радиальны, почти совпадают с направлениями радиусов Земли.

Поверхность, всюду перпендикулярная направлениям силы тяжести, называется уровенной поверхностью. Уровенные поверхности можно проводить на разных высотах; все они являются замкнутыми и почти параллельны одна другой.

Уровенная поверхность, совпадающая с невозмущенной поверхностью Мирового океана и мысленно продолженная под материки, называется основной уровенной поверхностью или поверхностью геоида.

Если бы Земля была идеальным шаром и состояла из концентрических слоев различной плотности, имеющих постоянную плотность внутри каждого слоя, то все уровенные поверхности имели бы строго сферическую форму, а направления силы тяжести совпадали бы с радиусами сфер. В реальной Земле направления силы тяжести зависят от распределения масс различной плотности внутри Земли, поэтому поверхность геоида имеет сложную форму, не поддающуюся точному математическому описанию, и не может быть определена только из наземных измерений.

В настоящее время при изучении физической поверхности Земли роль вспомогательной поверхности выполняет поверхность квазигеоида, которая может быть точно определена относительно поверхности эллипсоида по результатам астрономических, геодезических и гравиметрических измерений. На территории морей и океанов поверхность квазигеоида совпадает с поверхностью геоида, а на суше она отклоняется от него в пределах 2 м (рисунок 1).

Рисунок 1. - Физическая поверхность Земли.

За действительную поверхность Земли принимают на суше ее физическую поверхность, на территории морей и океанов - их невозмущенную поверхность.

Что значит изучить действительную поверхность Земли? Это значит определить положение любой ее точки в принятой системе координат. В геодезии системы координат задают на поверхности эллипсоида вращения, потому что из простых математических поверхностей она ближе всего подходит к поверхности Земли; поверхность этого эллипсоида называется еще поверхностью относимости. Эллипсоид вращения принятых размеров, определенным образом ориентированный в теле Земли, на поверхность которого относятся геодезические сети при их вычислении, называется референц-эллипсоидом.

Для территории РФ еще постановлением Совета Министров СССР N 760 от 7 апреля 1946 г. принят эллипсоид Красовского: большая полуось a = 6 378 245 м, малая полуось b = 6 356 863 м, полярное сжатие

a = (a - b) / b = 1 / 298.3

Применяемые в разных странах референц-эллипсоиды могут иметь неодинаковые размеры; существует и общеземной эллипсоид, размеры которого утверждают Международные геодезические организации. Так, в системе WGS-84 (World Geodetic System) большая полуось a = 6 378 137.0 м, полярное сжатие

a = (a - b) / b = 1 / 298.2566 = 0.003352810665

Малая полуось b вычисляется через a и α.

Для многих задач геодезии поверхностью относимости может служить сфера, которая в математическом отношении еще проще, чем поверхность эллипсоида вращения, а для некоторых задач небольшой участок сферы или эллипсоида можно считать плоским.

Все измерения происходят на земной поверхности и околоземном пространстве. Землю мы принимаем за эллипсоид вращения. Наша задача с земной поверхности отобразить предметы на эллипсоиде, а потом уже перенести на топографическую карту. При переносе происходит, без сомнения, искажение.

Под масштабом изображения понимают степень уменьшения предмета по отношении к его действительным размерам.

Степень уменьшения линий на карте относительно горизонтальных проложений (рисунок 2), соответствующих линий на местности называются масштабом карты.

Горизонтальное проложение – это линия земной поверхности, спроектированная на эллипсоид.

Рисунок 2. - Геометрическая сущность горизонтального проложения.

3. Географическое содержание топографических карт (планов), его пояснение.

В основе разграфки и номенклатуры карт лежит Международная карта мира масштаба 1:1.000.000, листы которой образуют 4° ряды по параллелям и 6° колонны — по меридианам. Колонны нумеруются от 180° меридиана. Ряды обозначаются заглавными буквами латинского алфавита от экватора к югу и северу, начиная с буквы A. Колонны нумеруются арабскими цифрами с запада на восток. Первая колонна начинается со 180° меридиана.

Номенклатура листа масштаба 1:1 000 000 состоит из буквы ряда и номера колонны. Для карты южного полушария после номенклатуры записывается «Ю.П.».

Номенклатура и разграфка топографических карт более крупных масштабов строится следующим образом. Каждый лист карты масштаба 1:1 000 000 делится на 4 листа карты масштаба 1:500 000 (обозначается заглавными, русскими буквами: А, Б, В, Г), или на 36 листов масштаба 1:200 000 (обозначается римскими цифрами: I, II … XXXVI), или на 144 листа масштаба 1:100 000 (обозначается арабскими цифрами от 1 до 144).

Разграфка карты масштаба 1:1 000 000 на карты масштаба 1:300 000 делается делением листа 1:1 000 000 на 9 частей, которые обозначаются римскими цифрами (I—IX), и выносится вперед номенклатуры. Лист 1:100 000 делится меридианами и параллелями на 4 листа масштаба 1:50 000 (20″ по широте и 30″ по долготе), которые обозначаются заглавными русскими буквами: А, Б, В, Г. Лист масштаба 1:50 000 делится на 4 листа 1:25 000 (обозначаются строчными русскими буквами: а, б, в, г). Карта масштаба 1:25 000 делится на 4 листа масштаба 1:10 000 (обозначаются арабскими цифрами: 1, 2, 3, 4). Пример номенклатуры карты масштаба 1:10 000: [N-37-4-Б-а-3].