Смекни!
smekni.com

Минеральный состав глауконитовых сферолитов в верхнемеловых и палеогеновых отложениях воронежской антеклизы (стр. 2 из 3)

Выдвинутое нами предположение [1] об образовании глауконита путем деструкционноэпитаксиального преобразования (депитизации) твердых тел, объясняет, как нам представляется, большинство, если не все, различия в свойствах глауконитовых сферолитов. Это касается морфологических особенностей, химического и минерального состава, в какой-то мере цвета, характера поверхности.

Во фракции <0,1 мм большинство зерен угловатые, обломочного типа, без трещин, под бинокуляром их цвет – светло-желтовато-зеленый. Меньшинство – овальные, почковидные, с тонкими, волосовидными трещинами, как правило потемнее угловатых. Во фракции 0,25-0,5 мм основная масса сферолитов овально-почковидной формы, с глубокими трещинами, темно-зеленого цвета. Встречаются и угловато-округло-обломочные зерна без трещин, как темно-зеленые, так и светлые, но последние значительно реже. Глауконит фракции 0,1-0,25 мм является как бы промежутком между охарактеризованными выше разновидностями, но все-таки пожалуй ближе к более крупной разности.

Угловатые обломочной формы сферолиты, по-нашему мнению, есть ни что иное, как преобразованные процессами депитизации зерна обломочных силикатов, а овальные, почковидные, с трещинами синерезиса копролиты илоядных организмов. Гладкая поверхность обломочных зерен обусловлена окатанностью первичного, измененного материала. Как бы в подтверждение этого предположения нужно отметить, что чем крупнее зерна обломочного глауконита, тем чаще наблюдается у них гладкая поверхность. А у мелких обломков она чаще шероховатая, В случае преобразования копролитов гладкая блестящая поверхность глауконита обязана своим происхождением прохождением первичных фекальных комочков через кишечник илоеда. Этим же объясняется и их своеобразная гроздьевидная, почковидная форма и наличие трещин, трактуемых как доказательство образования глауконитов путем раскристаллизации гелевых комочков и последующего их растрескивания при этом процессе. В обломочных зернах трещины не наблюдаются. Если подходить строго, то любой процесс, в том числе и раскристаллизация, должен характеризоваться идентичными, во всяком случае схожими результатами. Иначе получается нонсенс, в одном образце зерна одной формы с трещинами, другой без. Гораздо вероятней, что образование трещин связано с перераспределением внутренних напряжений, образующихся при чисто механическом сдавливании стенками кишечника илоедов фекальных масс и протекающих в них химических процессах пищеварения. То есть трещины были изначально присущи фекалиям илоедов, по которым и шло образование глауконита, в точности повторяя форму первичного материала. Шероховатость же, этой морфологической разности может служить критерием их вторичного или преобразования, или, во всяком случае, переотложения.

Таблица 2

Состав глауконитовых сферолитов

Встречаемые иногда формы, трактуемые в литературе [8], как агрегаты и сростки глауконита с различными силикатами, по-моему мнению как раз и являются примером того, что глаукониты образуются путем преобразования различных силикатов. Нами было исследовано одно такое образование, представляющие собой спикулу губки. С одной стороны этот цилиндрической формы агрегат имеет нормальный вид спикулы, с другой – образование зеленого цвета. По всей длине спикула одинакового диаметра, гладкая без каких-либо выступов и углублений. Под бинокуляром контакт между двумя, разного цвета, частями выглядит резким. Исследования, выполненные на микрозонде, показали, что в собственно спикуле содержится 100% кремнезема, а зеленой части – смесь окислов различных элементов (табл.2), входящих в состав гидрослюды и монтмориллонита. О том, что это не прилипшие друг к другу спикула и глауконит, а именно новообразование второго по первой свидетельствуют, как ровная, гладкая поверхность всего агрегата, так и результаты электронномикроскопических исследований. На снимке контакта между двумя минеральными фазами хорошо видна неровная «изъеденная» поверхность собственно спикулы и «вырастающие» из нее пластинки слоистых силикатов (рис.2).

Достаточно резкие морфологические отличия глауконитовых сферолитов отражаются и в результатах ренгеновского анализа. Обломочные разности имеют, как правило, монтмориллонит-гидрослюдистый состав, а сильно выраженная асимметрия и большие отклонения значений рефлексов на дифрактограммах свидетельствуют об очень небольших размерах частиц, слагающих зерна глауконита. Овальные, почковидные с трещинами глаукониты – в целом более слюдистые, хотя и не исключение высокие, в некоторых пробах до 50%, содержания монтмориллонита. Но рефлексы слюды на дифрактограммах, сделанных с образцов этой морфологической разности глауконитов, более симметричны и значения их межплоскостных расстояний не превышает 10,4 Е (при съемке воздушно-сухих препаратов). Значения d001 монтмориллонита, в свою очередь, характеризуются достаточно хорошо выраженными рефлексами (рис.1-VI). Следовательно, для данной морфологической разности частицы глинистых минералов, слагающих глауконитовые сферолиты, имеют более крупные размеры. Нередко в крупных темно-зеленых, овально-почковидных, с трещинами зернах (рис.1-V), глауконит имеет чисто слюдистый состав, а рефлексы этого минерала достаточно симметричные, узкие и незначительно изменяются (с 10,1 до 10 Е) при насыщении препарата глицерином. Подобная дифракционная картина характеризует уже большие, приближающиеся по своим размерам к микрону, частицы слюды.

Для такого различия в составах глауконитовых зерен определяющим фактором нужно считать органическое вещество, разложение которого приводит к повышению температуры внутри копролита, что значительно ускоряет химические реакции преобразования минеральных компонентов, слагающих его. В свою очередь, нахождение в одном зерне слюды и монтмориллонита, свидетельствует о разных условиях их образования. В щелочной среде морского осадка происходит растворение минерального вещества копролитов и зерен силикатов и одновременный синтез новых слоистых минералов, устойчивых к этим условиям. Так как процесс начинается в самой верхней части осадка, где рН среды не очень высокий, то здесь образуется слюда. При захоронении зерен вглубь осадка, где щелочность повышается, или переносе их в более щелочную среду начинается образование монтмориллонита, а иногда клиноптилолита (о наличии этого минерала в зернах глауконита упоминает и В.К.Бартенев) [9], при условии, что не все первичное вещество преобразовалось в слюду. Иногда процесс останавливается на каком-то этапе и тогда на электронномикроскопических снимках наблюдается полурастворенные, с «изъеденными» краями обломки силикатов [1], а на дифрактограммах проявляются рефлексы каолинита.

При достаточно малых размерах частиц слагающих глаукониты, теряется рентгеновское различие между слюдой и монтмориллонитом. На дифрактограммах (рис.1-VII) воздушно-сухих препаратов проявляются отражения со значениями 10,6; 4,98; 3,32 Е отвечающие слюде. При насыщении препаратов глицерином, появляется серия рефлексов, близкая к упорядоченной – 19,8; 9,9; 4,93; 3,34 Е, которую можно трактовать принадлежащей как монтмориллониту, так и смешанно-слойному образованию. Но куда в таком случае делась слюда, определенная при съемке воздушно-сухого препарата. Очень похожая картина наблюдается на рис.1-IV, но там при насыщении препарата глицерином остается только слюда.

Практически о том же пишет и Мило [10], приводя данные Джонса и Брауна, которые исследовали зависимость между размерами частиц и их химическим составом. По их мнению, чем меньше кристалл слюды, тем ближе его химическая формула отвечает составу монтмориллонита. По нашему мнению это не совсем так. В центральной части любой частицы и состав, и структура конечно же отвечают таковым «нормальному» минералу, в том числе и слюде. А вот в краевой части, где связь между атомами нарушена, ситуация меняется в корне. Что касается слюды, то она в первую очередь теряет калий, удерживающие слои, из-за чего структура и так не уравновешенная, становится еще более нестабильной. В случае с глауконитом она не может удержать и железо, поэтому в краевых областях частиц остаются только кремний, алюминий, кислород и гидроксилы, обладающие более сильными межатомными связями. В целом, химический анализ таких глауконитов, сложенных очень малыми частицами, показывает пониженные содержания калия и железа, а следовательно завышенные концентрации кремнезема и глинозема.

По данным И.В.Николаевой [11] цвет глауконита зависит от содержания в нем железа. В принципе с этим утверждением можно согласиться, учитывая наши наблюдения глауконитовых сферолитов под бинокуляром и микроскопом и сравнивая их с данными рентгеновского анализа, а также результатами определений на микрозонде (см. табл.2). Светлые зерна, сложенные субмикроскопическими частицами монтмориллонита и гидрослюды, содержат в своем составе больше кремния, алюминия, кальция. Чем темнее сферолиты, тем крупнее частицы слагающие их, больше калия, железа и меньше кремния, алюминия, кальция.

Практически отсутствуют пробы в которых глауконит был бы представлен одной морфологической модификацией и имел бы одинаковый цвет. Разделение на гранулометрические фракции в какой-то степени позволяет выделить более или менее однородные разности сферолитов. Выявлено, что на морфологическую однородность будут влиять особенности первичного материала (копролиты, обломки силикатов), по которому шло образование глауконита.