F =
g * d * W * ( H)2Правильность этого выражения подтверждается уже тем, что точно такое же выражение мы имеем для силы, действующей на боковую стенку прямоугольного сосуда, наполненного жидкостью до высоты H.
В соответствии с полученным выражением для горизонтального сжатия в зоне нисходящего потока (под Гималаями, считая линию сжатия параллельной линии спрединга) имеем: F =
*9.8 (м/сек2) * 3300(кг/м3) * 1м * (7 500 м)2 = 91 * 1010 н.Эта горизонтальная сила приложена перпендикулярно к вертикальной полосе, секущей твердую кору сверху донизу. Тогда на каждый 1м2 сечения коры (толщиной 90 км) в среднем приходится сила 1*107 н (=100кгС/см2). Это примерно 1/20 предела прочности монолитного гранита в наилучших условиях (200 МПА для одноосевого сжатия при обычной температуре). Но это в среднем. На практике же, и прочность пород из-за дефектов меньше даже при низкой температуре (в верхних слоях коры), и эффективная толщина коры меньше, и перепад высот приведенных уровней может быть больше. Кроме того, большая часть сечения коры имеет высокую температуру, отчего ее прочность существенно уменьшается. Так что эффективные напряжения одноосевого (в направлении от восходящего потока к нисходящему) сжатия в твердой коре над нисходящими частями вязкого конвекционного потока вполне достаточны для превышения предела прочности пород, составляющих кору, и выдавливания в этих зонах из коры гор (в моменты землетрясений).
Если напряжения сжатия недостаточны для преодоления предела прочности, то пластические деформации не происходят, просто кора несколько напряжена - упруго деформирована. Если же сжатие так велико, что превышается предел прочности, то в результате очередного землетрясения с очагом в некоторой точке (быстрой пластической деформации) вдоль линии сжатия, проходящей через очаг землетрясения, напряжение сжатия разряжается. Тогда как в прилегающих областях (вокруг этой линии) напряжение сжатия скачком возрастает (из-за некоторого смещения коры как целого), в результате чего может иметь место такое явление, как форшоки и афтершоки. Аналогичная картина наблюдается не только при сжатии соседних плит коры, но и при их относительном сдвиге.
Средний темп генерации гор на всей Земле за счет их выдавливания из зоны сжатия составляет:
V = длина растущих гор (=60000км) * выдавливаемая часть толщины коры (=1/6Н=5км) * скорость сближения плит (=2см/год) V 6 кубических километров в год на всей Земле. Выдавливание гор на границе плит.Причем поперечное сечение выдавливаемого горного хребта (S=
*B*h) увеличивается, в среднем, с постоянной скоростью (для Гималаев S = (1/6Н=15км) * (=2см/год) 300 м2 в год). Отсюда следует вывод, что высота гор h (при прочих равных условиях) меняется гораздо быстрее у низких гор (когда ширина основания горного хребта B мала). Если для Гималаев мы примем ширину зоны горного хребта, испытывающего поднятие в настоящее время, равной 60 км, то получим скорость роста высоты гор в этой поднимающейся зоне порядка 1 см/год, или 1 метр за 100 лет (без учета их разрушения). Отметим также, что, имея данные о скорости сближения плит, о скорости увеличения высоты гор, зная толщину коры и сечение горного хребта, легко увидеть, какая часть толщины коры выдавливается в виде гор вверх (действительно ли 1/6?), а какая - в виде корней гор вниз в ходе сближения плит.Высота гор растет до предела, обусловленного прочностью пород (R 200 МПА для одноосевого сжатия гранита и базальта без дефектов) и силой тяжести g на планете. При превышении этого предела начинает выдавливаться новый горный хребет, почти параллельный предыдущему - генерируется целая горная провинция. По этой причине высота гор на Земле (h) ни при каких условиях не может быть больше 14.8 км
2 * 7.4 км (200 МПА > (g * d * h) = (9.8*2800*7400)). Коэффициент 2 появляется из-за того, что горы не параллелепипеды, а, скорее, лежащие на боковой грани треугольные призмы с сечением S= *B*h. Поскольку реально высота гор от подножия до вершины (а не над уровнем моря) не превышают 5 км, мы должны сделать вывод, что эффективная прочность пород коры, по крайней мере, втрое меньше взятой из справочника (для бездефектного образца).То есть, из-за различных дефектов в теле гор, а также из-за дополнительного сопротивления (сверх преодолеваемого литостатического давления выдавливаемых гор) при их выдавливании из коры, горы на Земле никогда не достигают максимально возможной высоты (соответствующей прочности бездефектных пород). Даже под водой, где часть давления горы компенсируется давлением воды. Кстати, по этой причине подводные горы могут иметь несколько большую крутизну и высоту, чем горы на суше. Еще большую высоту могут иметь горы на небесных телах с меньшей, чем на Земле, силой тяжести. Так, конусообразная (а не призматическая!) гора Олимп на Марсе имеет высоту порядка 24 км.
Отметим, что при выдавливании из материковой коры гор площадь самой материковой плиты (того образования, которое мы сегодня видим как материковую плиту) со временем слегка уменьшается. Это замечание позволяет точнее увидеть баланс площадей материков и океанов в относительно близком геологическом прошлом.
В далеком же прошлом потоки глубинного тепла были в K раз больше нынешних, конвекционные потоки были интенсивнее, а кора была в K раз тоньше [2]. Поскольку непосредственно под тонкой корой и давление было меньше, и температура выше, магма непосредственно под корой в то время была менее вязкой. Менее вязкая магма увлекала кору с меньшей силой. Поэтому в зонах нисходящих мантийных потоков в те времена не развивались такие огромные усилия, как в настоящее время, т.е. вязкое увлечение коры магмой в те времена было недостаточно сильным для интенсивного горообразования в этих зонах (для пластической деформации коры). Кора над нисходящими потоками при относительно малом давлении под ней и тогда была достаточно толстой, чтобы выдержать относительно слабое сжатие. Над нисходящими потоками температура уже слегка остывшего мантийного потока была минимальной, поэтому наиболее тугоплавкие вещества из состава мантии кристаллизовались здесь на нижней поверхности коры более интенсивно, чем в зоне восходящего потока. Равновесие наступало из-за уменьшения скорости отвода тепла (в том числе, тепла кристаллизации) через более толстую кору. Скажем, для теплового потока, большего, чем сегодняшний, в 10 раз, толщина коры составляла 5 км. В итоге приходим к выводу, что во времена более интенсивных потоков тепла из глубин планеты интенсивность тектонических процессов была намного ниже нынешней из-за гораздо меньшей вязкости магмы непосредственно под тонкой корой.
Прямую аналогию, подтверждающую наши выводы, мы видим в Северном ледовитом океане. Площадь здешних льдов сравнима с площадями литосферных плит, скорости течений, увлекающих льды, намного больше скоростей древних мантийных потоков. Вязкость воды лишь немного меньше вязкости жидкой магмы под тонкой древней корой (и высокотемпературной магмы из нынешних вулканов), и на много порядков меньше вязкости нынешней мантии. Поэтому и не наблюдаем мы в Северном ледовитом океане многокилометровые ледяные горы, но зато наблюдаем торосы высотой в несколько метров, для образования которых только и хватило сил сжатия в ледовых полях, увлекаемых водными и воздушными течениями (к тому же, часто торосы образуются лишь после разгона ледяных полей на открытой воде при закрытии трещины), хотя толщина и прочность льдов в тысячи раз меньше толщины и прочности коры.
Поскольку пластическая деформация коры (землетрясение) происходит в момент превышения предела прочности пород коры результирующей (суммарной) силой, то возможен прогноз времени землетрясения - времени превышения этого предела. Для вычисления прогноза землетрясения необходимо знать: а) текущие напряжения, б) текущий предел прочности, в) прогноз изменения напряжений, г) прогноз изменения прочности.
Воздействие медленно меняющихся главных движущих сил, создающих подавляющую часть (почти 100%) механического напряжения, может быть достаточно легко учтено (хотя бы путем экстраполяции). А вот воздействие намного меньших, но гораздо быстрее меняющихся по величине спусковых сил должно учитываться отдельно. Именно быстро меняющиеся спусковые силы (главные из них - силы атмосферного давления и приливные силы в зависимости от фазы Луны) определяют приход землетрясения с точностью до лет, дней, часов и минут. Тогда как гораздо большие, но медленно меняющиеся главные движущие силы определяют время прихода землетрясения с эпицентром в заданном месте с точностью до столетий и тысячелетий.