Смекни!
smekni.com

Включения ультрамафитов в базальтоидах островных дуг (стр. 4 из 8)

Рис. 6

Попытаемся теперь разобраться в столь сложном вопросе о том, какие причины вызывают изменение состава шпинелей. Прежде всего, необходимо помнить, что наблюдаемые на рис.3 ряды, в первую очередь, отражают характер изменения состава минералов при переходе от фации шпинелевых лерцолитов (поле шпинелей из ксенолитов в базанитах Вьетнама в верхней части диаграммы) к условиям оливин-плагиоклазового равновесия. Подобного рода преобразования шпинелей подробно были изучены одним из авторов настоящей статьи [15]. На рис.4 и 5 показан характер изменения глиноземистости и хромистости шпинелей из лерцолитов Вьетнама при их декомпрессионной перекристаллизации вплоть до плавления образца ксенолита. Переход от центральных, практически неизмененных частей зерен, к краевой каемке и далее - к обособленной, расположенной уже в стекле реликтовой или новообразованной фазе в этих ксенолитах сопровождается уменьшением глиноземистости и возрастанием хромистости минерала. Одновременно возрастает содержание TiO2(от 0,01-0,3 до 0,9-1,0%) и степень окисленности железа (от 0,1 до 0,5). Такой путь эволюции можно предположить для обьяснения особенностей изменения состава шпинелей первых двух рядов на рис.3, а также для наиболее глиноземистых шпинелей Шивелуча (с изменением содержания Al2O3 от 34 до 24%, рис.4), если сравнивать их с менее глиноземистыми и более хромистыми генерациями (табл.3, NN18,19). Связаны ли тренды изменения составов всех "доинверсионных" шпинелей с их декомпрессионной перекристаллизацией? Например, поля составов этого минерала в авачинских гарцбургитах также характеризуются уменьшением глиноземистости и возрастанием хромистости по мере увеличения его железистости (рис.6 и 7) Зональность большинства зерен шпинелей здесь, однако, принципиально другая, чем это проявлено в минералах вьетнамских ксенолитов. Она идет "от стекла", а не "к стеклу", как в случае с вьетнамскими шпинелями. Такая зональность не могла образоваться в результате декомпрессионной перекристаллизации и плавления ксенолитов. Практически весь ряд генераций шпинелей авачинских гарцбургитов содержит многочисленные округлые микровключения частично раскристаллизованного и закаланного с образованием силикатных стекол материала. Судя по их морфологии, характеру распространенности и составу мы имеем здесь дело с первичными расплавными включениями. Тренд изменения составов шпинелей, содержащих эти включения, и их зональность в общих чертах согласуются с общим трендом эволюции этого минерала в большинстве авачинских гарцбургитов. Следовательно, этот тренд характеризует изменение составов минерала в ходе его магматической кристаллизации. Возрастание глиноземистости и уменьшение хромистости здесь сопровождается некоторым увеличением степени окисленности железа (от 0,1 до 0,4-0,5) и возрастанием содержания MgO в минерале. Как правило, величина отношения Fe2O3/FeO обратно коррелируется с величиной содержания MgO в шпинелях. Возрастание этого отношения с ростом железистости минерала обычно обьясняется понижением температуры и возрастанием фугитивности кислорода fO2. В данном случае мы имеем дело либо с повышением температуры, либо с внедрением новой порции более магнезиального расплава. Сходные с только что рассмотренными тренды наблюдаются также для некоторых "доинверсионных" шпинелей в гарцбургитах Шивелуча и Ключевского вулкана (рис.4 и 5). Этим доказывается и здесь возможная изначально магматическая природа некоторых наиболее ранних генераций этого минерала. Возвращаясь опять к рис.6, можно заметить присутствие среди авачинских шпинелей небольшого числа генераций с обратной по отношению к общему тренду зональностью по глинозему. Анализ поведения хрома при этом показывает (рис.7), что зональность эта бывает двух типов. В одном случае уменьшение глиноземистости сопровождается возрастанием хромистости минерала. Отношение Fe2O3/FeO при этом немного уменьшается от 0,48 до 0,36, и состав шпинели стремится приблизиться к наиболее хромистым и наименее глиноземистым генерациям этого минерала в интенсивно перекристаллизованных ксенолитах с роговиковой текстурой (табл.3, N6). Степень окисленности железа здесь также сравнительно невысокая 0,40-0,47. Это относительно "сухой" путь вторичной перекристаллизации рассматриваемого минерала. Второй тип зональности характеризуется тем, что уменьшение глиноземистости шпинели сопровождается падением содержания хрома и значительным возрастанием степени окисленности железа от 0,39 до 0,95. Это относительно "мокрый" путь вторичной перекристаллизации минерала. Только в этом случае составы шпинелей ксенолитов приближаются к составам подобных минералов альпинотипных гипербазитов. Последние, правда, при этом имеют степень окисленности железа не более 0,2. Второй тип зональности авачинских шпинелей, с тем же уровнем нарастания степени окисленности железа, характерен для всех постинверсионных шпинелей, широко представленных среди высокомагнезиальных ксенолитов на вулкане Шивелуч, встречающихся на Харчинском и Ключевском вулканах. Такой тип зональности обычно наблюдается в шпинелях при падении температуры и увеличении фугитивности кислорода. Эта зональность может быть первичной, образовавшейся при росте шпинели из расплава, либо быть связанной с процессами перекристаллизации этого минерала при меняющейся физико-химической обстановке. Несколько слов следует сказать в отношении акцессорных шпинелей, которые были встречены в одной из пироксенитовых жил, секущих авачинский гарцбургит (табл.3, N5).

Рис.7

По сравнению с "магматическими" шпинелями, содержащими расплавные включения, шпинели из жилы несколько обеднены Al2O3 и характеризуются повышенной степенью окисленности железа (0,4-0,5), так же, как и шпинели гарцбургитов с роговиковой структурой (табл.3, N 6). Таким образом, жильные шпинели весьма схожи с теми генерациями рассматриваемого минерала, которые испытали "мокрый" путь вторичной перекристаллизации.

Клинопироксены. Являются также сквозными минералами почти во всех типах включений. Содержание его в зависимости от типа породы колеблется от единичных зерен до 99-100%. В наиболее распространенных среди магнезиальных разностей ксенолитов - гарцбургитах на долю этого минерала приходится не более 3-5%. В единичных образцах лерцолитов содержание его повышается до 5-6%, а в некоторых интенсивно перекристаллизованных разностях с роговиковыми структурами клинопироксен исчезает совсем. Преобладающим минеральным видом является диопсид, и только некоторые наиболее железистые пироксениты района Бакенинга представлены титан-авгитом. Как видно из таблицы 4, состав клинопироксена в первую очередь зависит от состава вмещающей породы. Так, наиболее магнезиальные генерации этого минерала обычно присутствуют в гарцбургитах и магнезиальных вебстеритах, а наиболее железистые, как правило, - в пироксенитах и верлитах. Исключение составляют жилы пироксенитов в Авачиских гарцбургитах, которые характеризуются весьма магнезиальным пирок-сеном (табл.4, NN4 и 8). С ростом железистости минерала обычно увеличивается его глиноземистость. Это наиболее общий признак, отклонение от которого свидетельствует о каких-то специфических условиях кристаллизации (или перекристаллизации) пироксена. Например, общее возрастание глиноземистости клинопироксенов в ряду Авачинских ксенолитов (табл.4, NN1-14) нарушается в сторону более низких значений для жильных пироксенитов (табл.4, NN4 и 8). Аномально низкая глиноземистость сопровождается здесь уменьшением содержания Cr, а в одном из образцов (табл.4, N4) - резким возрастанием содержания Ca. Высокая магнезиальность, наряду с пониженной глиноземистостью свидетельствуют о том, что главным механизмом образования жильных пироксенитов, скорее всего, была вторичная собирательная перекристаллизация гарцбургитов. При этом анализ изотопных характеристик [19] указывает на то, что в некоторых образцах (табл.4, N8) этот процесс сопровождался флюидным метасоматическим обогащением. Аномально высокая глиноземистость и хромистость наблюдается в клинопироксенах дочерних генераций (табл.4, N6 и 10), а также в тех пироксенах, которые образовались после шпинели-консерванта (табл.4, N1 и 2). Это может быть связано с их резко пониженной железистостью и обусловлено теми же причинами, которые вызвали рост магнезиальности авачинских шпинелей на ранней, "магматической" стадии их эволюции.

Рис. 8

В ряду клинопироксенов из ксенолитов Шивелуча последовательное нарастание глиноземистости с ростом железистости нарушается в сторону ее понижения для интенсивно амфиболитизированных пироксенитов (табл.4, NN25-27 и 29), которые выделяются также более высоким содержанием Na2O и почти во всех образцах - CaO. Только в ксенолитах Ключевского вулкана изменение глиноземистости клинопироксенов по отношению к их железистости имеет бессистемный характер.

Различия в составах этого минерала (в координатах Na-Al) и трендах его эволюции для ксенолитов разных ассоциаций можно видеть при рассмотрении рис.8. Клинопироксены района Бакенинга характеризуются наибольшей натровостью и глиноземистостью, а также высокой титанистостью и пониженной кальциевостью (рис.8, А; табл.4, NN30-34). Эволюция состава этого минерала заканчивается очень эффектным трендом в области его вторичной перекристаллизации, который характеризуется резким понижением глиноземистости при почти постоянной натровости. Для гарцбургитов и пироксенитов Шивелуча характерен довольно узкий интервал изменения содержания глинозема в клинопироксенах при значительных вариациях его натровости (рис.8, Б). При этом эволюция большинства генераций происходит в сторону некоторого уменьшения глиноземистости, но резкого возрастания концентраций Na, особенно на границе с амфиболом. Эта тенденция наиболее ярко проявлена в пироксенитах, но намечается также и в гарцбургитах. Клинопироксены из ксенолитов Авачинского вулкана характеризуются в целом низкими содержаниями Na и варьирующими - Al (рис.8, В и Г). Во многих образцах намечается прямая корреляционная зависимость между этими характеристиками. Зональность в авачинских клинопироксенах проявлена гораздо слабее, чем на Шивелуче. В гарцбургитах (рис.8, В) она не отмечена вовсе. Однако, если минералы-узники в шпинели рассматривать в виде ранних генераций, а пироксены цементирующего шпинели агрегата - в качестве поздних генераций, можно наметить общий тренд эволюции этого минерала в гарцбургитах, который характеризуется уменьшением натровости и глиноземистости. Железистость минерала при этом уменьшается от 9,8-10 до 5,8%%. Сходный тренд, вероятно, проявлен и для пироксенов жильных пироксенитов. Отдельные образцы верлитов и вебстерита характеризуются обособленными полями составов клинопироксенов (рис.8, Г). При этом наиболее натровые составы пироксенов наблюдаются в образце, содержащем расплавные и флюидные включения. Переход от генераций этого минерала, содержащих микровключения, к генерациям, где они обнаружены не были, в общем случае сопровождается уменьшением натровости, глиноземистости и железистости минерала. По сути дела, здесь наблюдается тот же тренд, что и в гарцбургитах. В таком случае клинопироксены вебстеритов отражают, вероятно, наиболее позднюю стадию эволюции этого минерала.