Смекни!
smekni.com

Рыбинское водохранилище (стр. 6 из 7)

На синтезированном изображении (см. приложение ) хорошо различаются с/х и селитебные земли, поскольку цветовые характеристики снимка среднего разрешения подчеркиваются четко выраженной структурой изображения высокого разрешения. Также более четко видны и другие объекты антропогенного происхождения: просеки, дороги и т.д.

С помощью данного метода удалось лучше отдешифрировать структуру болот: однозначно выделились мезотрофные облесенные стоки с них, хотя на исходном снимке высокого разрешения и при его обработке МГК они плохо дешифрировались из-за сходства с сосновыми и еловыми зеленомошными лесами водно-ледниковых гряд, а на изображении среднего разрешения – из-за недостаточности разрешения.

Совмещение обоих изображений привело к выявлению береговой линии, что позволило четко выделить зону временного затопления, хотя, как уже указывалось, ни на одном из исходных снимков по отдельности она практически не выделяется. Эта зона имеет на синтезированном изображении наиболее темный цвет. Выделение этих комплексов произошло потому, что при совмещении двух разносезонных изображений четко обозначились их границы: на одном из снимков уровень водохранилища высок (практически сразу после половодья), и хорошо видна береговая линия, а на другом граница снежного покрова обозначает минимальный уровень (после зимней межени). Для удобства дальнейшего анализа зона временного затопления была отделена по яркостному порогу по четвертому каналу синтезированного изображения (наиболее контрастному) и окрашена в синий цвет (см. приложение ).

3.3 Анализ результатов дешифрирования изображений, полученных путем вычисления индекса

NDVI по исходным снимкам

Методы вычисления вегетационных индексов (в т.ч. индекса NDVI) можно отнести к полностью автоматизированным методам, в которых участие пользователя ограничивается лишь последним этапом – идентификацией выделенных объектов.

Снимок среднего разрешения (приложение ) сделан в конце мая, когда практически вся растительность находится в зеленом состоянии, поэтому на нем территория дешифрируется преимущественно по присутствию (светлые оттенки серого) или отсутствию (темный тон) растительности. Там, где растительность есть, можно выделить ее различное состояние – молодые с/х культуры на дерново-подзолистых окультуренных почвах характеризуются максимальной яркостью, а различные болотные комплексы и основные поверхности водно-ледниковых и моренных равнин различной степени дренированности с сосновыми и еловыми преимущественно зеленомошными лесами практически не выделяются из общего фона. В целом данное изображение недостаточно информативно, поскольку на нем не дешифрируется бонитет лесной растительности и, следовательно, степень дренированности территории.

Снимок высокого разрешения после вычисления индекса NDVI представляет из себя более интересную картину (см. приложение ), поскольку на нем ярко проявляются лишь хвойные леса, что позволяет их легко дешифрировать. Древние бугристые сухие материковые дюны с сосновыми беломошными и беломошно-зеленомошными лесами на слабоподзолистых почвах, а также плоские, местами широкие свежие и влажные водно-ледниковые гряды с сосновыми и еловыми зеленомошными лесами на слабоподзолистых и слабоподзолистых глееватых почвах выделяются наиболее светлым цветом. Используя метод выделения объектов по яркостному порогу, эти комплексы были окрашены красным цветом (приложение ).

3.4 Анализ результатов дешифрирования изображений, полученных путем обработки исходных снимков

методом кластерного анализа

Кластерный анализ, как и предыдущий метод, относится к автоматизированным цифровым методам обработки многозональных изображений. Идентификация выделенных с его помощью объектов проводится с привлечением наземной информации, карт, спектральных кривых, а также других методов обработки изображений. Сравнительный анализ ландшафтной карты и кластерного изображения на территорию заповедника показал, что на снимке среднего разрешения (приложение ) мы видим различную яркость лесов на тех или иных местообитаниях, которая определяется бонитетом леса, его сомкнутостью и т.д., что прямо зависит от условий увлажнения территории.

Среди урочищ гряд водораздельных равнин на снимке среднего разрешения хорошо выделяются занимающие очень незначительные площади древние материковые дюны, бугристые, сухие со слабоподзолистыми почвами под сосновыми беломошными и беломошно-зеленомошными лесами. На кластерном изображении они характеризуются заметным преобладанием темно-зеленого цвета. Четко выделяются плоские, местами широкие, свежие водно-ледниковые гряды со слабоподзолистыми почвами под сосновыми зеленомошными лесами, они дешифрируются по преобладанию сине-зеленого цвета. Урочища плоских влажных водно-ледниковых гряд со слабоподзолистыми глееватыми почвами под еловыми и березовыми зеленомошными лесами дешифрируются менее однозначно, на кластерном изображении они в некоторых местах выделяются как более сырые местообитания, чем это должно быть, судя по карте. Этим урочищам соответствует преобладание сине-зеленого цвета в сочетании со светло-зелеными и коричневым. Урочища, находящиеся в переходной зоне от гряд к болотным массивам, представляют из себя сырые местообитания с торфяно-средне- и сильно-подзолистыми почвами под сосновыми, еловыми и березовыми заболачивающимися лесами. На кластерном изображении они выделяются по сочетанию светло-зеленого и сине-зеленого цветов.

Среди урочищ болотных массивов наиболее четко выделяются занимающие обширные территории на Молого-Шекснинском полуострове открытые олиготрофные и олиготрофно-мезотрофные болота с грядово-мочажинным комплексом на глубоких торфах. Эти урочища определяются по явному преобладанию светло-коричневого цвета. По окраинам этих болот (в основном на местах стоков с них) темно-коричневым цветом обозначаются мезотрофные открытые и облесенные болота на средних и мелких торфах. Остальные урочища болотных массивов выделяются хуже, например, облесенные олиготрофные болота на мелких и средних торфах читаются почти так же, как и облесенные мезотрофные стоки с болот. По всей видимости, это опять-таки связано с маскирующим эффектом древесной растительности.

Растительность сельскохозяйственных угодий на конец мая (которым датируется снимок) характеризуется очень высокой отражательной способностью, что подтверждается ее спектральным профилем на рис. , и имеет на кластерном изображении светло-коричневый цвет, как и растительность болот. Однако, эти контура перемежаются с контурами открытых почв селитебных территорий (голубой цвет кластерного изображения), из чего можно заключить, что это именно культурная растительность, либо растительность естественных пастбищ (отделить пастбища от пашен по снимкам практически невозможно).

Антропогенные объекты, такие как населенные пункты, особенно крупные, обладают значительной неоднородностью отражательных свойств в различных их частях. Так центры городов и особенно их промышленные территории, характеризующиеся повышенной загрязненностью (металлургический завод в Череповце, центр Рыбинска), обладают более плотной застройкой, чем окраины. Они имеют на исходном снимке значительно более темный оттенок, выражающийся на кластерном изображении темно-зеленым и даже фиолетовым цветами.

При сравнительном анализе различных карт, исходного и кластерного изображений видно, что за некоторыми исключениями преобладанию каждого цвета кластерного изображения среднего разрешения соответствуют территории с приблизительно одинаковым увлажнением, сходной структурой растительного покрова или одинаковым типом землепользования. Так, в выделенных по исходному снимку лесных контурах на кластерном изображении выделяются более дробные градации по степени дренированности местообитаний: преобладающему темно-зеленому цвету соответствуют сухие и свежие дренированные местообитания с сосновыми зеленомошными лесами и их производными; преобладающему сине-зеленому — свежие и влажные дренированные местообитания с сосновыми и еловыми зеленомошными и смешаннотравными лесами и их производными; сочетанию сине-зеленого и светло-зеленого — влажные и сырые слабодренированные местообитания с хвойными зеленомошными и долгомошными лесами и их производными; сочетанию светло-зеленого и темно-коричневого — сырые местообитания с заболоченными мелколиственными и сосновыми лесами.

В пределах болотных контуров выделяются следующие градации: преобладанию светло-коричневого цвета соответствуют открытые купола олиготрофных и олиготрофно-мезотрофных болот с грядово-мочажинным комплексом; сочетанию темно-коричневого со светло-коричневым — мезотрофные облесенные болота, в том числе на местах стока с олиготрофных болот.

По снимку высокого разрешения (датируемому серединой апреля) (приложение ), как уже отмечалось выше, дешифрирование территории может производиться преимущественно по присутствию и состоянию снежного покрова, а также наличию и плотности древесной растительности, которая его маскирует.

Большая часть природных объектов выделяется не однозначно и характеризуется сочетанием цветов. Более темным градациям яркости соответствуют древние материковые дюны, бугристые, сухие с сосновыми беломошными и беломошно-зеленомошными лесами на слабоподзолистых почвах и урочища плоских водно-ледниковых гряд, свежих и влажных, с сосновыми и еловыми зеленомошными лесами на слабоподзолистых и слабоподзолистых глееватых почвах. На кластерном изображении они характеризуются сочетанием преимущественно сиреневого цвета в сочетании с зеленым. Мезотрофные облесенные стоки с болот на мелких и средних торфах выделяются по преобладающему зеленому цвету, т.е. также имеют достаточно невысокую отражательную способность из-за присутствия древесной растительности. Возможно, затемняющий эффект оказывается и состоянием снега, который на местах стоков с болот сходит интенсивнее и поэтому не обладает высокой яркостью, характерной для устойчивого снежного покрова.