Смекни!
smekni.com

Рыбинское водохранилище (стр. 2 из 7)


I. МЕТОДИКА РАБОТЫ

В данной работе использовалось пять методов цифровой обработки космических изображений, которые можно подразделить на три основные группы (как, впрочем, и другие цифровые методы, не использовавшиеся здесь):

- методы улучшения качества изображения (для последующего визуального дешифрирования – метод главных компонент и метод “наложения”);

- интерактивные методы (пользователь участвует непосредственно в процессе обработки, задавая определенные условия – выделение объектов по яркостному порогу);

- автоматизированныеметоды (пользователь практически не участвует в процессе обработки изображений, лишь на последнем этапе идентифицируя выделенные машиной объекты – кластерный анализ и вегетационный индекс NDVI).

1.1 Метод главных компонент и его применение

Метод главных компонент (МГК) используется как эффективный инструмент анализа данных. Он позволяет выявить основные закономерности анализируемых изображений, выявляя и подавляя помеховые сигналы. В конечном итоге, объем данных уменьшается, а их информативность увеличивается. Изображения, полученные с помощью МГК, дополняют друг от друга, и обычно легче поддаются интерпретации, чем исходные данные.

Процесс обработки данных МГК можно пояснить на примере распределения яркостей пикселов в двухканальном спутниковом изображении. На рис. показано распределение их значений на плоскости.

Координатные оси соответствуют яркостям пикселов в каждом канале. Если данные в обоих каналах имеют нормальные распределения, то итоговое распределение имеет характерную форму эллипса.

В n-мерной системе координат эллипс (2 измерения), эллипсоид (3 измерения) или гиперэллипсоид (более чем 3 измерения) формируются, если распределение в каждом канале нормальное или близкое к нормальному. Для удобства будем использовать далее термин “эллипс” вне зависимости от числа рассматриваемых каналов.


Основной идеей МГК является вращение осей спектрального пространства таким образом, чтобы добиться максимальной некоррелированности координат анализируемых точек. Очевидно, что при этом происходит изменение координат каждого пиксела относительно новых осей, т.е. меняются их яркостные значения. Продольная секущая, которая соответствует главной (самой длинной) оси эллипса, называется первой главной компонентой (ПГК) данных.

Направление первой главной компоненты - первый собственный вектор, а ее длина - первое (максимальное) собственное число. Новая ось спектрального пространства определяется этой первой главной компонентой, а точкам в системе координат, соответствующей этой оси, теперь присваиваются новые координаты.

0

Первая компонента показывает направление и длину главной оси эллипса. Вдоль нее яркости пикселов будут иметь в среднем наибольший диапазон изменчивости, что облегчает разделение объектов по различным яркостным градациям. На рис. легко видеть, что первое собственное число (длина наибольшей оси эллипса) будет всегда больше, чем дисперсии измерений в исходных каналах, так как гипотенуза прямоугольного треугольника всегда длиннее любого из его катетов.

В двухмерной системе координат вторая главная компонента соответствует второй оси эллипса.

255

В вероятностном смысле она описывает наибольший разброс данных измерений, которые не учитывает (из-за ортогональности) ПГК. В общем случае в n измерениях имеются n основных компонент. Каждая последующая главная компонента:

- является самой длинной из оставшихся осью эллипса и ортогональна к предыдущим компонентам в n-мерном пространстве системы координат.

- ее длина количественно соответствует дисперсии оставшейся (неучтенной предыдущими основными компонентами) изменчивости данных.

После применения МГК количество каналов, данные которых анализируются, остается прежним, т.к. поворот осей в n‑мерном пространстве не понижает его размерности. Однако, несколько первых новых каналов учитывают максимальный разброс данных - в некоторых случаях почти 100%, ‑ поэтому данными остальных каналов часто можно пренебречь без потери полезной информации. Таким образом, практически МГК позволяет уменьшить объем данных и понизить количество используемых каналов.

Отдельный анализ различий по второй и последующим компонентам может выявить минимальные различия данных основных составляющих каналов. По этим компонентам, после устранения влияния предыдущих, можно выделить очень тонкие детали изображения, которые были затенены более высоким контрастом в первоначальном изображении. В ряде случаев они могут использоваться, наоборот, для целей фильтрации, исключая характерный шум в данных (например, помехи в данных, полученных со старых или неисправных сканеров).

Обратное преобразование изображения, обработанного МГК, в исходное со снижением уровня шумов после удаления последних главных компонент, содержащих эти шумы, называется инверсией главных компонент. Этот прием используется для более качественного и точного распознавания объектов и их свойств другими цифровыми методами.

1.2 Объединение снимков с различным разрешением

В ‘’ERDASImagine’’ существует функция, позволяющая объединить два снимка различного разрешения для получения третьего изображения, обладающего лучшими характеристиками обоих исходных снимков.

Данная функция как бы “накладывает” один из каналов изображения с высоким разрешением на каждый канал изображения среднего разрешения, что можно наглядно описать следующей формулой:

Ех (1S + 2S + 3S + 4S) = 1ES + 2ES + 3ES + 4ES, где

Е – один из каналов исходного изображения с высоким разрешением;

1S,2S,3S,4S – каналы исходного изображения со средним разрешением;

1ES,2ES, 3ES,4ES – получившиеся каналы синтезированного изображения, имеющие высокое пространственное разрешение и цветовую подложку от снимка среднего разрешения.

1.3 Выделение объектов по яркостному порогу

Данный метод используется в ситуациях, когда известен приблизительный разброс яркостей выделяемого объекта в том или ином канале рассматриваемого изображения. Этот разброс можно получить, используя гистограмму и ход спектральных кривых объекта, полученных по тестовым точкам (рис. ). В таком случае пользователь задает приблизительные значения (пороги), в пределах которых может колебаться яркость выделяемого объекта, и выделить его с необходимой степенью точности.

1.4 Метод вычисления вегетационного индекса NDVI

Методы вычисления вегетационных индексов (в т.ч. индекса NDVI) заключаются в выделении зеленой растительности с помощью простого арифметического преобразования и относятся к полностью автоматизированным методам, в которых участие пользователя ограничивается лишь одним последним этапом – идентификацией выделенных объектов.

Использование вегетационных индексов возможно благодаря специфическому ходу спектральных кривых зеленой растительности (рис. ). Нормализованный вегетационный индекс NDVI равен отношению разности яркостей пиксела изображения в инфракрасном и красном диапазоне спектра к их сумме,

т.е.ИК – К .

ИК + К При этом, чем больше значение данного индекса, тем более яркой является рассматриваемая растительность и тем в более хорошем состоянии она находится.

1.5 Основные понятия и методика кластерного анализа

Кластерный анализ относится к цифровым автоматизированным методам обработки космических изображений и позволяет выделять контура с неконтрастной по спектральной яркости структурой. Это могут быть как непосредственно выделяемые растительность, открытые почвы, вода, облака и другие объекты (рис. ), так и некоторые особенности территории, выделяемые по косвенным признакам, например, увлажнение, степень продуктивности почв, литологический состав пород и т.д.

Алгоритм кластеризации производит спектральный анализ исходного многозонального растрового изображения и пересчитывает его в однозональное, распределяя все пикселы в кластеры по их яркостным характеристикам.

Метод кластеризации ISODATA использует спектральные расстояния как основу, но классифицирует пикселы в несколько приемов (итераций), переопределяя критерии для каждого класса и классифицируя снова таким образом, что спектральные расстояния составляющих исходных данных постепенно уточняются. Также он пересчитывает статистику.

Метод ISODATA использует минимальное спектральное расстояние, чтобы определить соответствующий кластер для каждого пиксела. Процесс начинается с назначения случайного (приближенного) среднего значения кластера и повторяется до тех пор, пока это значение не достигнет величины среднего для каждого кластера исходных данных. Начальные средние значения кластеров распределяются равномерно вдоль центрального вектора спектрального пространства. Количество кластеров задается пользователем.

В течение первой итерации пространство равномерно разбивается на области, центром каждой из которых являются средние значения кластеров (рис. ). Пикселы анализируются с левого верхнего угла изображения к нижнему правому, блок за блоком. Вычисляется спектральное расстояние между пикселом и средним значением кластера. Пикселы назначаются в тот кластер, где это расстояние минимально (рис. ). При этом назначенные центры кластеров смещаются, т.к. их средние значения меняются в зависимости от преобладающих яркостей попавших в них пикселов. Для того, чтобы определить расположение новых центров, производится второй пересчет. В процессе второй итерации снова определяются минимальные спектральные расстояния между точками и новыми средними значениями кластеров. В результате этого пикселы снова перераспределяются.