Смекни!
smekni.com

Пирокластические отложения андезитовых вулканов и диагностика их генетических типов (стр. 2 из 4)

Отложения пеплово-глыбовых пирокластических потоков также несортированы и залегают согласуясь с рельефом, но количество обломков в их составе повышено до 40-50 %, размер глыб может достигать 7-10 м. Длина потоков небольшая - до 10 км, содержание собственно ювенильного вещества в них - до первых десятков процентов. На поверхности потоков четко выражены бортовые и фронтальные валы высотой до 10-15 м.

Пирокластические волны представляют собой высокогазонасыщенные турбулентные потоки с низким содержанием обломочного материала [25,32, 33,35]. Движущей силой пирокластических волн, как и потоков, является количество движения магмы, автоэксплозивность, а также высокие газонасыщенность и температура материала. Скорость распространения таких волн достигает 100-150 км/ч [21,27], дальность зависит от мощности извержения, состава, газонасыщенности, температуры пирокластики, присутствия на их пути значительных по высоте препятствий и т.д. Волнам присуще стремительное, "ураганное" распространение от центра извержения; отмечались случаи преодоления ими препятствий высотой более 600 м [120]. В то же время волны не поднимаются высоко над землей (см. рис.1, рис.3) [32].

В настоящее время выделяются две основные разновидности пирокластических волн: приземная волна и волна пеплового облака.

Рис. 4

Приземная пирокластическая волна (ground surge), выделенная Р.Спарксом и Г.Уолкером [33], образуется при обрушении краевых частей эруптивной колонны и по времени опережает пирокластический поток, формирующийся при коллапсе центральной части этой колонны. Некоторые ученые считают также, что такие волны возникают и в процессе движения пирокластического потока: благодаря подсосу воздуха во фронтальных и боковых частях потока происходит сепарация частиц его заполнителя и отложение их в виде песчаного прослоя в основании пирокластического потока [40,41]. Эти механизмы образования отложений в какой-то мере объясняют то, что породы приземной пирокластической волны подстилают и обрамляют отложения пирокластических потоков.

Отложения приземной волны представляют собой хорошо отсортированные средне-крупнозернистые пески с небольшим количеством обломков размером от 2 до 20-30 мм. Мощность отложений при слабых извержениях вулканов может достигать 10 см; при сильных, катастрофических - 2-3 м [4,12]. Особенностью образований является то, что их переход в отложения пирокластических потоков происходит постепенно, без резкой границы [12].

Яркой чертой заполнителей этих отложений является одномодальное распределение фракций - резкое преобладание частиц диаметром 0,125 - 0,25 мм (например, до 30-42 %, вулкан Безымянный (рис.4)) или 0,25 - 0,5 мм (например, до 37-45 %, вулкан Шивелуч). Обломков крупнее 2 мм содержится в них не более 10 %. Характерно, что преобладающие фракции заполнителей приземных волн и пирокластических потоков одного извержения - одинаковы.

Формирование пирокластической волны пеплового облака (ash cloud surge, понятие ввел Р.Фишер [25]) происходит в результате конвективной гравитационной дифференциации пирокластики при движении ее по склону вулкана [10,12,27]. При движении пирокластического потока над ним на несколько километров в высоту поднимаются пепловые облака пирокластического потока. Внутри этих облаков, непосредственно над потоком, формируется турбулентный низкоплотностный высокогазонасыщенный и высокотемпературный "слой", который распространяется прямолинейно и с высокой скоростью, может отрываться от тела потока и двигаться независимо от него. Этот "слой" и называется пирокластической волной пеплового облака.

Отложения волн пеплового облака, грубослоистые или монолитного облика, залегают в виде пятен на отложениях пирокластических потоков и заплесков на бортах долины, по которой двигалась пирокластическая масса, встречаются в форме дюн и дюнного рельефа, небольших отдельных потоков и протяженных покровов. Они также могут быть обнаружены в основании пирокластических потоков. Tогда на кровле отложений волн пепловых облаков (ash cloud surge) обычно залегает тонкий материал пепловых облаков пирокластических потоков (ash cloud of flows) мощностью от первых миллиметров (если он формируется после остановки порций пирокластических потоков) до первых или десятков сантиметров (если фиксирует окончание кульминационной фазы извержения вулкана). Мощность отложений волн пепловых облаков может достигать 1 - 2 м при слабых извержениях вулканов и 3 - 5 м при сильных [4,12].

Материал пирокластических волн пепловых облаков (ash cloud surges) агрегирован, в отличие от приземных волн (ground surges), что связано, вероятно, с различиями в механизме формирования их отложений [12].

По гранулометрическому составу заполнители отложений волн пепловых облаков имеют бимодальное распределение фракций - преобладание частиц размером 0,125 - 0,5 мм и менее 0,056 мм (см. рис.4) [12]. Содержание обломков в них достигает 20 - 25 %. Преобладающая крупнозернистая фракция заполнителей отложений совпадает с таковой пирокластических потоков.

Особой разновидностью пирокластических волн являются отложения, формирование которых происходит при извержениях вулканов типа направленных взрывов. Впервые отложения направленного взрыва были детально описаны на вулкане Безымянный после катастрофического извержения 30 марта 1956 г. Тогда же, в результате изучения характера и продуктов этого извержения, Г.С.Горшков ввел понятие "извержение типа направленного взрыва" [13]. Похожие отложения, связанные с направленным взрывом, были выделены на вулканах Мон-Пеле, Сент-Хеленс, Унзен и др.

Отложения песка направленного взрыва (названы Г.С.Горшковым и Г.Е.Богоявленской [14]). После выброса взрывных или обрушения обвальных масс, открывающих магматическую камеру вулкана, появляется высокотемпературная эмульсия твердого материала в смеси водяного пара и газа, которая через несколько секунд после извержения занимает объем в несколько тысяч раз больший, чем вначале (по А.Лакруа, [28]). Энергия таких "эмульсий" не затрачивается на подъем в эруптивной колонне и обрушение из нее, а целиком состоит из "первичной" кинетической. Мощные пирокластические волны ураганом, стремительно, сметая все на своем пути, распространяются на 25 - 30 км от центра извержения.

Отложения песка направленного взрыва не согласуются с топографией подстилающего рельефа - их мощность (до 2 м у кратера вулкана и до 1 - 2 см на расстоянии 30 км) примерно одинакова и в долинах и на водоразделах. Залегают они как на поверхности земли - на почвенно-пирокластическом чехле, так и в разрезах - под отложениями агломерата направленного взрыва и пирокластического потока [4]. Отложения песка направленного взрыва, как и образования волн пепловых облаков, слоисты.

По гранулометрическому составу такие отложения представляют собой вулканический песок с примесью обломков пород до 10 - 20 %. Преобладают обломки диаметром 1 - 2 см, но встречаются и размером до 10 - 20 см.

Отложения пепловых облаков пирокластических потоков или пеплы облаков потоков (ash cloud of pyroclastic flow или ash cloud of flow) или коигнимбритовых облаков (co-ignimbrite plumes) образуются в процессе движения пирокластического потока по склону вулкана и представляют собой пеплы, отделившиеся от заполнителя потока в результате конвективной гравитационной дифференциации пирокластической массы [12]. Пока поток (или его порции) движется, над ним клубится пеплово-паро-газовое облако, из которого впоследствии, спустя некоторое время после остановки пирокластического потока, происходит отложение "пеплов облаков потока".

Не выделяя эти отложения в отдельный тип, но подчеркивая различия их с образованиями "палящих туч", Г.С.Горшков писал: "Тучи, поднимающиеся над раскаленными лавинами, сколь они ни эффектны, имеют низкую температуру, не могут ничего опалить..." И далее: "Туча ..., поднимающаяся над раскаленной лавиной, генерируется в лавине, поднимается вертикально вверх, не распространяясь в стороны, и не имеет разрушительной силы"[15, С. 60].

В отличие от тефры, выбрасываемой из кратера вулкана на высоты 5 - 20 и более километров, пепловые облака потоков, как правило, поднимаются над поверхностью на высоты лишь первых километров. При формировании разных типов потоков их пепловые облака достигают разных высот. Так как пирокластические потоки ювенильных пористых андезитов содержат до 60 - 70 % заполнителя, большое количество ювенильного материала и газа, их пепловые облака поднимаются на большую высоту и их отложения имеют больший ареал распространения, по сравнению с пепловыми облаками пеплово-глыбовых пирокластических потоков (даже при одинаковых масштабах извержений, продуцирующих разные потоки). Замечено также, что в момент наивысшего поднятия облака над фронтом потока, максимальная ширина облака примерно равна его высоте от поверхности потока, а эта величина, в свою очередь, в 8 - 10 раз превышает ширину фронта пирокластического потока [12].

При небольшом ветре отложения пепловых облаков имеют в плане эллипсообразную форму. Пирокластический поток и его окрестности они перекрывают слоем примерно одинаковой мощности (см. рис.3), на удалении этот слой постепенно истончается. Границы распространения отложений находятся в 1,5 - 2 км от оси пирокластического потока (при ширине потока в несколько сотен метров) и несколько дальше от его фронта. При сильном ветре форма "эллипса" отложений может быть изменена. В зависимости от масштаба извержения, стратификации атмосферы в момент извержения вулкана, а также силы ветра, пепловые облака потоков могут перемешиваться с нижними слоями эруптивной тучи, а их материал может переноситься на далекие расстояния. В целом, распространение отложений пепловых облаков пирокластических потоков зависит от масштаба извержения, состава пород вулкана, типа пирокластического потока, стратификации атмосферы, силы и направления ветра.