Смекни!
smekni.com

Компьютерные технологии как инструмент получения новой информации о строении океанических разломов (стр. 2 из 4)

Все указанные особенности получения цифровой модели и оценки ее качества относятся только к случаю материалов, представленных изолиниями. В современных эхолотных системах, где многолучевой способ промера глубины дна порождает огромный массив XYZ точек, покрывающий полосу дна шириной до 3,5 глубин, данные уже практически приближены к состоянию пространственной функции, описывающей дно с почти равномерной дискретностью, т.е. к сетке. В этой ситуации становятся актуальными альтернативные способы визуализации дна, такие как оттененный (shaded) рельеф, цветовая или тоновая отмывка (image map) и их комбинации с традиционным методом изолиний. Но не метод изолиний в чистом виде, поскольку для современной детальности этот метод скорее скрывает информацию о рельефе, чем визуализирует ее.

Сравнение предсказанной топографии [Smith and Sandwell, 1997] с оттененным рельефом, полученным в результате оцифровки в пределах исследуемого полигона (рис. 2 и 5), показало, что имеется хорошее совпадение данных, хотя в отдельных случаях на предсказанной топографии были объединены в единую структуру разные объекты, особенно в областях развития осадочного чехла. Для оценки точности предсказанной топографии с реальной батиметрией было произведено совмещение контуров. В результате выяснилось, что предсказанная топография дает ошибку порядка 100 м в сторону уменьшения глубины.

Гравитационное поле в пределах полигона было построено по данным спутниковой альтиметрии [Sandwell and Smith, 1997] с разрешением в одну дуговую минуту (рис. 9а). Это поле представляет собой высоты поверхности океана, снятые радарным способом и пересчитанные в значения силы тяжести на уровне моря или аномалию в свободном воздухе. Эта аномалия на 80-90% состоит из влияния рельефа, как самого контрастного скачка плотностей. Плотностной контраст вода-дно, равный 1,72 г/см3, маскирует эффект производимый неоднородностями коры и мантии. Поскольку рельеф является объектом изучения другого метода - эхолотирования, и хорошо им изучен, для снятия маскирующего влияния этой границы была рассчитана аномалия Буге. Эта аномалия отражает гравитационный эффект плотностных неоднородностей коры и контрастной границы кора-мантия. Контраст плотности на этой границе существенно меньше, чем в вышележащей толще и поэтому ее вклад в аномальное поле должен быть представлен плавными изменениями аномальной составляющей. Плотностные неоднородности коры представлены сильными локальными аномалиями Буге разного знака по сравнению с общим фоном.

Для понимания распределения породных комплексов были собраны данные о донном опробовании с различных судов, которые были организованы в виде электронных таблиц в реляционной базе данных. Помимо этого, в Интернете были собраны данные по сейсмичности [CNSS..., 1997]. В целом, в результате работы был собран и систематизирован огромный фактический материал, который позволял провести комплексную обработку данных. Базовым материалом для последующего анализа стал созданный набор карт в масштабе 1 : 650000:

http://eos.wdcb.rssi.ru/rjes/v03/rje01055/rje01055.htm - fig06hookhttp://eos.wdcb.rssi.ru/rjes/v03/rje01055/rje01055.htm - fig07hookhttp://eos.wdcb.rssi.ru/rjes/v03/rje01055/rje01055.htm - fig08hookhttp://eos.wdcb.rssi.ru/rjes/v03/rje01055/rje01055.htm - fig09hookhttp://eos.wdcb.rssi.ru/rjes/v03/rje01055/rje01055.htm - fig10hookhttp://eos.wdcb.rssi.ru/rjes/v03/rje01055/rje01055.htm - fig11hook

Лист 1. Схема работ 7-ого рейса НИС "Академик Николай Страхов" (ГИН РАН, 1988 г.) на востоке активной части зоны разломов Сан-Паулу. Соколов С. Ю., Ефимов В. Н. (рис. 3).

Лист 2. Рельеф активной части зоны разломов Сан-Паулу. Агапова Г. В., Добролюбова К. О. (рис. 5).

Лист 3. Карта углов наклона склонов активной части зоны разломов Сан-Паулу. Добролюбова К. О., Агапова Г. В., Соколов С. Ю. (рис. 6).

Лист 4. Карта мощности осадочного чехла активной части зоны разломов Сан-Паулу. Ефимов В. Н., Кольцова А. В. (ГЕОХИ РАН), Соколов С. Ю. (рис. 7).

Лист 5. Рельеф акустического фундамента активной части зоны разломов Сан-Паулу. Соколов С. Ю., Ефимов В. Н. (рис. 8).

Лист 6. Гравитационное поле активной части зоны разломов Сан-Паулу. Соколов С. Ю. (рис. 9).

Лист 7. Сейсмичность активной части зоны разломов Сан-Паулу. Соколов С. Ю. (рис. 10).

Лист 8. Коренные породы активной части зоны разломов Сан-Паулу. Мазарович А. О. (рис. 11).

Основные особенности строения активной части разлома Сан-Паулу по данным комплексного анализа

Разломная зона Сан-Паулу в пределах полигона состоит из четырех субширотных желобов, разделенных межразломными поднятиями (рис. 5). Глубины желобов, как отмечалось ранее [Агапова, 1993], увеличиваются с севера на юг от 3700 до 4200 м. В пределах изученной территории установлено также 3 рифтовых долины. С геодинамической точки зрения, съемкой было охвачено три активных и четыре пассивных частей трансформных разломов и две зоны спрединга.

В связи с тем, что зона разлома Сан-Паулу представляет единую систему из нескольких близко расположенных разломов, имеющих одно общее название для их отличия, была разработана схема виртуальных наименований, которая в дальнейшем и будет нами использоваться (табл. 2, рис. 12).

Для изученной части системы характерны короткие отрезки рифтов и чередование узких хребтов.

Трог SP1 представляет собой фланговую часть разломной депрессии, ограниченную с севера высоким хребтом, над которым возвышается остров Сан-Паулу, а в пределах полигона массивные блоки, вершины которых имеют глубины менее 2000 м, а глубина над горой Белоусова достигает 623 м.

Вдоль северного борта трога простирается обширная выровненная ступень с глубиной поверхности около 3500 м. Ее край осложнен узкой субширотной грядой, над которой поднимаются пики с глубиной менее 3000 м. Как на ступени, так и в троге SP1 отмечены наиболее значительные мощности осадков, поверхности которых формируют самые обширные в пределах полигона выровненные участки дна. Эта часть трога представляет собой восточную фланговую часть наиболее протяженного сдвига в системе разломов Сан-Паулу и удалена от одноименного острова на расстояние более чем 140 миль.

Хребет SP1-2_W_RI протягивается от западной рамки изученной территории практически до ее востока. В указанном направлении он постепенно сужается и уменьшается по высоте. На всем протяжении хребет почти лишен осадочного чехла. Наибольшее расчленение рельефа характерно для его западной части, где расположена гора с глубиной вершины около 2500 м. Восточнее ее расположено обширное понижение рельефа, лежащее на продолжении рифтовой долины. Здесь установлены глубины 3400-3600 м и пологие углы склонов. В западной части морфоструктуры были подняты базальты (рис. 11). Восточнее 26o25

з.д. вершинная поверхность хребта опускается на глубины 3200 м, над которыми возвышаются отдельные пики с высотой в 200-400 м. Для осевой части хребта, особенно в восточной части полигона, характерны неоднократные изменения простираний, что особенно хорошо видно на карте углов наклонов склонов. Изучение осадочного чехла на сейсмических профилях показывает (рис. 13а, б, в), что во многих местах на северо-востоке района происходят флексурные изгибы слоев, формирование уступов и моноклиналей. Можно думать, что здесь происходил интенсивный подъем крупных участков акустического фундамента.

Трог SP2 хорошо выражен в рельефе дна, в акустическом фундаменте представляет депрессию, восточная часть которой заполнена осадочным чехлом с мощностью осадков от 200 до 1100 м. Западнее рифта трог переходит в понижение неправильной формы, имеющей ячеистое строение. С ним связана концентрация эпицентров землетрясений (рис. 10). Восточнее нодальной впадины NB_SP2_E (см. ниже) желоб постепенно расширяется в восточном направлении. Вдоль его оси часто протягивается полоса горизонтального дна, к северу и югу от которой происходит увеличение его наклонов. Внутри желоба встречаются участки, где крутизна склонов увеличивается. В ряде мест отмечаются резкие расширения желоба, именно с этими местами связаны депоцентры накопления осадков (1000-1100 м).

Хребет SP2-3_W_RI, ограничивающий рифт с запада, состоит из двух частей, разделенных узкой седловиной северо-западного простирания. Южная, приразломная часть представляет собой субширотный гребень с двумя вершинами, разделенными седловиной. Западная пририфтовая часть представляет собой угловое поднятие с глубинами несколько меньше 2000 м. Южный склон имеет углы в среднем 8-12o, на фоне которых существуют резкие уступы с крутизной 20-45o. Северный склон более пологий.

Рифтовая зона SP2-3_RI (26o25

з.д.) имеет асимметричное строение - западный склон более крутой и наклоны здесь составляют в основном 12-15o, хотя на отдельных участках склонов они превышают 30o (рис. 14). Вдоль оси рифтовой долины протягивается узкий хребет с относительной высотой до 200 м. В северной части хребет становится низким и широким. Детальная батиметрия с сечением рельефа 10-20 м показывает, что он продолжается в пределы нодальной впадины NB_SP2_E, разделяя ее на две впадины - северную и южную. Этот район отличается наибольшими углами наклонов склонов в пределах всего полигона. В южной части рифтовой долины хребет постепенно поворачивает к ее западному борту и соединяется с ним. В пределах хребта была проведена драгировка RC280632 с судна "Роберт Конрад" [Schilling et al., 1995], которая подняла свежие базальты со стеклами. Тектоническое положение хребта и поднятая порода позволяет интерпретировать его как неовулканическое поднятие. Восточнее и западнее последнего протягиваются зоны узких и глубоких впадин, западная из которых прослеживается в нодальную впадину NB_SP2_W. Последняя имеет пологие склоны (первые градусы) и широкое горизонтальное дно. Она вытянута вдоль разлома SP2.