Смекни!
smekni.com

Гравитационная модель коры и верхней мантии Северной Евразии (стр. 4 из 5)

На первый взгляд не подтверждается неоднократно высказывавшееся ранее предположение о том, что под Черным морем и Южным Каспием имеется существенное разуплотнение верхней мантии [Гравитационная модель..., 1979]. Оказывается, что глубочайшие прогибы фундамента и подъем границы Мохоровичича в пределах этих структур вполне компенсируют друг друга, давая близкие к нулю мантийные аномалии над Черным морем и заметный максимум над Каспийским.

К ожидаемым результатам относятся интенсивные отрицательные мантийные аномалии вдоль восточной границы Евразии, связанные с окраинными морями. Максимальные амплитуды этих аномалий тяготеют к глубоководным впадинам. Тепловая природа этого разуплотнения не вызывает сомнений.

В центральной Азии обнаруживается две ярко выраженные зоны отрицательных остаточных аномалий. Одна из них расположена к юго-западу от Байкала, примерно в районе Хамар-Дабана. К сожалению, изученность этого района сейсмическими методами оставляет желать лучшего, поэтому говорить о точном пространственном положении выявленной аномалии пока невозможно. Тем не менее, имеются основания отнести эту область, как и несколько менее выраженную область отрицательных аномалий у северо-восточной оконечности Байкала, к "горячим'' точкам [Grachev, 1998]. Другая зона интенсивных отрицательных мантийных аномалий располагается в районе гор Каракорума и в особенности Кунь-Луня, лежащими на границе Таримского бассейна и Тибета. Для выяснения природы этих аномалий необходимо привлекать дополнительные данные, которые к сожалению пока отсутствуют.

5. Изостатические аномалии силы тяжести

Изостатические аномалии силы тяжести представляют разность между наблюденным гравитационным полем и полем, создаваемым изостатически скомпенсированной литосферой. В данном случае мы используем строгое определение изостазии, в соответствие с которым сумма аномальных масс в каждой литосферной колонке выше некоторого уровня, называемого уровнем изостатической компенсации, равна нулю. В дополнение к топографическому рельефу, аномальным массам осадочного чехла и вариациям границы Мохо вводятся плотностные неоднородности консолидированной коры и верхней мантии, которые в сумме дают изостатически уравновешенную литосферную колонку.

Рис. 16
Рис. 17

Изостатические аномалии гравитационного поля показаны на рис. 16. Из этих аномалий удален также региональный фон, показанный на рис. 17. Параметры разделения коротко- и длинноволновой составляющих поля изостатических аномалий выбраны на основании анализа спектра полного поля, показанного на рис. 18. Этот спектр имеет выраженный минимум на длинах волн 2000-2700 км.

Рис. 18

Очевидно, что структуры с горизонтальными размерами 1000 км и более изостатически скомпенсированы, причем на таких длинах волн способ компенсации уже не играет роли, в любом случае изостатические аномалии должны быть близки к нулю. Таким образом, длинноволновая составляющая поля изостатических аномалий (рис. 17) обусловлена глубинными плотностными неоднородностями и динамическими эффектами конвективных течений в мантии. В исходном гравитационном поле эти эффекты практически полностью маскированы полем, создаваемым неоднородностями литосферы. Поле изостатически скомпенсированных литосферных неоднородностей имеет широкий спектр, а поэтому не может быть полностью редуцировано с помощью низкочастотной фильтрации [Artemjev et al., 1994a, 1994b]. Таким образом, полученные в настоящей работе длинноволновые аномалии гораздо лучше подходят для изучения глубинных мантийных неоднородностей и мантийной конвекции, чем длинноволновая составляющая аномалий в свободном воздухе.

Локальные изостатические аномалии (рис. 16) отображают влияние, в основном, трех факторов:

1. Нарушениями изостазии, так как при вычислении изостатических аномалий не принималась во внимание возможность упругой поддержки приповерхностной нагрузки.

2. Неучтенными плотностными неоднородностями осадочного чехла и фундамента.

3. Отклонениями реальной схемы изостатической компенсации от использованной при моделировании.

Влияние второго и третьего факторов было существенно редуцировано в настоящих расчетах, по крайней мере для крупных структур, за счет учета плотностных неоднородностей осадочного чехла и подбора эффективной модели компенсации. Таким образом, полученные в данной работе изостатические аномалии в гораздо большей степени отображают особенности геодинамических режимов, чем во многих предыдущих исследованиях.

Интенсивность (изменчивость) поля изостатических аномалий прямо связана со степенью тектонической активности (современной и прошлой) конкретного региона. Стандартное отклонение поля, показанного на рис. 16, составляет 10-16 мГал в платформенных областях, 18-20 мГал - в районах, где процесс горообразования давно завершился (напр. Урал), 36-57 мГал - в областях с высоким уровнем современной тектонической активности (Альпийско-Средиземноморский складчатый пояс, Памиро-Алтай, Тянь-Шань, Байкал) и достигает 70 мГал в районе островных дуг и глубоководных желобов. Необходимо отметить, что учет реального строения коры позволил существенно (до 2 раз) редуцировать амплитуды изостатических аномалий по сравнению с теми, что были рассчитаны по простейшей схеме Эри и с использованием только топографических данных [Артемьев, 1975]. Более подробно поле изостатических аномалий будет проанализировано в последующих частях работы.

Рис. 19

На основании полученных изостатических аномалий расчитаны максимальные значения модулей их горизонтальных градиентов (рис. 19). Поле градиентов представляет собой достаточно сложную картину. В нем отчетливо видна суперпозиция градиентных зон различной интенсивности и ширины, что, очевидно, отображает сложную, иерархически организованную структуру земной коры Евразии. Для выявления межблоковых границ выделены значения горизонтальных градиентов изостатических аномалий, которые являются максимальными по отношению к двум соседним хотя бы в двух из четырех возможных направлений. Выделенные значения почти повсеместно объединяются в протяженные зоны, которые и должны соответствовать границам блоков.

Градиентные зоны изостатических аномалий оконтуривают преимущественно субвертикальные контакты пород различной аномальной плотности в теле коры. Естественно, что большинство глубинных разломов должно создавать такие контакты. Плановое положение зон в общем подтверждает такое предположение. Практически очевидно также, что в областях с активной тектоникой плотностные контакты могут быть более выраженными вследствие большого разнообразия пород, смещенных тектоническими движениями на разные глубинные уровни. В стабильных областях древние глубинные разломы скрыты осадками и разделяют обычно сильно денудированную поверхность фундамента, т.е. плотностные контрасты блоков коры могут быть не столь велики. Соответственно и градиентные зоны будут не столь интенсивны. Тектонические движения там также существенно спокойнее. Таким образом, можно предположить, что в активных областях выявляются разломные зоны более высокой интенсивности, а в стабильных выявляются или древние и мертвые, или малоактивные зоны разломов. Этот вывод подтверждается даже на примере Урала: несмотря на бытующее представлении о чрезвычайно высокоградиентном поле, связанном с контрастными плотностными неоднородностями в Магнитогорской зоне, реальные градиенты изостатических аномалий существенно меньше, чем в тектонически активных зонах.

Мы приходим к заключению, что выявленные нами градиентные зоны, являясь объективной реальностью, отображают крупные зоны тектонических нарушений. Ширина этих зон соответствует скорее всего достаточно протяженным зонам деформации коры, т.е. не отдельным, как правило, разломам, а зонам их концентрации - разломным зонам.

6. Заключение

Построена плотностная модель коры Северной Евразии и рассчитано ее гравитационное влияние. После удаления этого поля из наблюденного гравитационного поля, получены остаточные мантийные аномалии. Мантийные аномалии явно разделяются на две составляющие, которые отображают влияние различных факторов:

1. Региональная компонента в первом приближении не коррелирована со структурами коры и отображает крупномасштабные особенности строения литосферы Евразии, предположительно связанные с особенностями ее термического режима. В частности, для северной и центральной частей Евразии характерны интенсивные положительные аномалии, в то время, как для Западной Европы и Юго-Восточной части Азии - отрицательные. Региональная часть мантийных гравитационных аномалий точно соответствует распределению скоростей поперечных волн, полученных методами сейсмической томографии [Ekstr o m and Dzievonski, 1998; Ritzwoller and Levshin, 1998].

2. В отличие от региональной компоненты, локальная составляющая поля мантийных аномалий с длинами волн менее 2000-2500 км имеет ясную привязку к конкретным тектоническим структурам. Наиболее выраженные положительные аномалии с амплитудами превышающими 100 мГал характерны для некоторых структур в пределах Восточно-Европейской платформы (Балтийский щит, Воронежский массив) и Восточной Сибири (Тунгусская синеклиза). К западу от линии Тессейра-Торнквиста четко прослеживается цепь отрицательных мантийных аномалий: Венгерская впадина - Рейнский Грабен - Центральный Французский массив. В центральной Азии наиболее ярко выраженная зона отрицательных мантийных аномалий расположена к юго-западу от Байкала, примерно в районе Хамар-Дабана. Можно предположить, что эти аномалии связаны с внедрением аномальной легкой мантии. Интенсивные отрицательные мантийные аномалии имеют место вдоль восточной границы Евразии, они связанны с окраинными морями.