Смекни!
smekni.com

Математические основания геоморфологии (по статье А.С. Девдариани) (стр. 4 из 4)

изучения современного и прогнозирование будущего рельефа, определяемые условием

;

изучения прошлого рельефа, определяемые в кинематике и динамике рельефа условием

, а в геометрии и статике рельефа — условием
.

Пограничные задачи геоморфологии делятся на пограничные задачи геометрии рельефа, когда

, и пограничные задачи кинематики рельефа, когда
при соблюдении, разумеется условия (9).

Список литературы

Журнал «Геоморфология», А.С. Девдариани, №1, 1971г., с.46-55.

Автором была использована литература:

Геология и математика. «Наука», Новосибирск, 1967.

Девдариани А.С. Итоги науки. Геоморфология, вып.1. Математические методы. Изд. ВИНИТИ, М., 1966.

Косыгин Ю.А., Воронин Ю.А., Соловьев В.А. Опыт формализации некоторых тектонических понятий. Геол. и геофиз., 1964, №1.

Косыгин Ю.А., Воронин Ю.А. Геологическое пространство как основа структурных построений. Статья 1. Геол. и геофиз., 1965, №9.

Родоман Б.Б. Математические аспекты формализации порайонных географических характеристик. Вестн. МГУ. География, 1967, №2.

Стинрод Н., Чинн У. Первые понятия топологии. «Мир», М., 1967.

Уитроу Дж. Естественная философия времени. «Прогресс», М., 1965.

Шиханович Ю.А. Введение в современную математику. «Наука», М., 1965.


[1] Автор не накладывает никаких ограничений на множества, входящие в прямое произведение W, и допускает, в частности, что они могут быть неупорядоченными. Поэтому множество векторов, образующих W, не является пространством в строгом математическом понимании. Однако автору представляется, что в географических и геологических целях такое расширение математического понятия пространства было бы весьма удобным. И это не шло бы в разрез с общей тенденцией расширения понятия пространства в математике от трехмерного евклидова к многомерным евклидовым, затем к метрическим и далее к топологическим пространствам.