Поляризация света происходит при прохождении через все кристаллы, за исключением кристаллов кубической сингонии; последние в оптическом отношении изотропны. Естественный свет, поступающий в кристалл, распадается на две световые волны, распространяющиеся с различными скоростями. Обе волны становятся поляризованными, причём плоскости их колебаний взаимно перпендикулярны. Это явление называется двупреломлением, или двойным светопреломлением. Двупреломление было открыто Бартолином в 1669 г. и в дальнейшем было изучено Х. Гюйгенсом.
В кристаллах тригональной, тетрагональной и гексагональной сингоний имеется только одно направление, по которому не происходит двойного светопреломления. Это направление называется оптической осью, оно совпадает с осью симметрии высшего порядка. Поэтому кристаллы средних сингоний называются оптически одноосными. В кристаллах триклинной, моноклинной и ромбической сингоний имеются два направления, по которым не происходит двойного светопреломления; они в оптическом отношении двуосны.
В кристаллах средних сингоний скорость распространения световых волн различна. Световая волна, распространяющаяся с одинаковой скоростью во всех направлениях, называется обыкновенной, а распространяющаяся в различных направлениях с различной скоростью - необыкновенной. Поверхностью первой световой волны является шар, а второй - эллипсоид вращения.
Цвет. Минералы могут иметь самые различные цвета и оттенки. Цвет минералов зависит от их внутренней структуры, от механических примесей и главным образом от присутствия элементов-хромофоров, т.е. носителей окраски. Известны многие элементы-хромофоры, таковы Cr, V, Ti, Mn, Fe, Ni, Co, Cu, U, Mo и некоторые другие. Эти элементы могут быть в минерале главными, или могут быть в виде примесей.
Побежалость - пёстрая или радужная окраска приповерхностного слоя. Она объясняется появлением тонких поверхностных плёнок за счёт изменения, например окисления, минералов.
Цвет черты. Минералы, твёрдость которых невелика, оставляют черту на неглазурованной фарфоровой пластинке. Цвет черты, или цвет минерала в порошке может отличатся от цвета самого минерала.
Блеск. Различают минералы с металлическим и неметаллическим блеском. Металлический блеск имеют те минералы (не зависимо от их окраски), которые дают чёрную черту. Неметаллический блеск характерен для минералов, дающих цветную или белую черту. Исключением являются только самородные элементы.
Магнитность. Это свойство характерно для немногих минералов. Наиболее сильными магнитными свойствами обладает магнетит. Минералы обладающие сильным полярным магнетизмом, называются ферромагнитными.
Существуют ещё: люминесценция, пироэлектричество, радиоактивность и др.
Эндогенные процессы минералообразования. Эндогенные процессы всегда так или иначе связаны с деятельностью магмы. Среди них выделяют:
Магматические процессы. К собственно магматическим процессам минералообразования относятся те, при которых минералы образуются непосредственно при кристаллизации магмы. Именно так возникли все минералы, слагающие магматические горные породы.
Как известно из курса общей геологии, магматические горные породы делятся на две большие группы: интрузивные, закристаллизовавшиеся на глубине, и эффузивные, образовавшиеся вблизи или на поверхности земли. Магматические процессы минералообразования могут быть связаны и с интрузиями и с эффузиями
Пегматитовый процесс. При кристаллизации гранитной магмы, образуется остаточный силикатный расплав, богатый соединениями редких и редкоземельных элементов и летучими веществами - минерализаторами. Этот силикатный расплав внедряется во вмещающие породы, заполняет в них трещины и полости и, кристаллизуясь, образует жильные крупнокристаллические тела - пегматиты.
Пегматиты богаты различными минералами. Кроме главных породообразующих минералов - микроклина, плагиоклазов и биотита - часто встречаются турмалины, для некоторых пегматитов характерны берилл, сподумен и многие другие.
Пегматитовые жилы могут достигать нескольких километров в длину и нескольких десятков метров мощности. Минералы пегматитов также достигают больших размеров.
Пегматиты часто имеют зональное строение, причём разные минералы приурочены к разным зонам.
Пневматолитовый процесс
Пневматолиз - процесс образования минералов из газовой фазы. На некоторых этапах кристаллизации магмы возможно отделение газов. По мере движения вверх по трещинам эти газы охлаждаются, реагируют друг с другом и с вмещающими породами, в результате чего образуются минералы. Пневматолиты (продукты пневматолиза) делятся на вулканические и глубинные.
Вулканические пневматолиты образуются в вулканических областях за счёт газов, отделяющихся от магмы вблизи или на поверхности земли. Вулканические газы в огромных количествах уходят в атмосферу через жерла вулканов, фумаролы и трещины.
В процессе возгона газа в трещинах лавовых покровов и кратерах вулканов происходит образование минералов. Преимущественно это хлориды и сульфаты - минералы, легко растворимые и поэтому не наблюдаемые в больших количествах. Обычно все минералы, образующиеся при вулканической деятельности, имеют вид налётов, мелкокристаллических корочек или землистых агрегатов.
К вулканическим возгонам, связанным с базальтовой магмой, можно отнести скопления сульфидов на дне Восточно-Тихоокеанского поднятия (на глубине около 2.5 км). В зоне спрединга обнаружены активно действующие вулканические жерла, извергающие твёрдые частицы и флюиды с температурой 350-400°С. На "жерловых площадях" образуются сульфидные холмы высотой до 10 м.
Скопления сульфидов по всей вероятности образованны благодаря редукции сульфата океанской воды во время её циркуляции, а также благодаря мобилизации вещества из базальтов.
Глубинные пневматолиты образуются в том случае, когда газы отделяются от магматического очага в недрах земной коры. Они просачиваются сквозь горные породы, реагируют с ними, преобразуя их химический и минеральный состав. Степень химических преобразований пород под действием газов зависит от их химической активности, состава пород, тектонического строения и длительности процесса.
Гидротермальный процесс
Гидротермы - горячие водные растворы, отделяющиеся от магмы или образующиеся в результате сжижения газов.
Причина движения гидротерм - разность давлений. Когда внутренне давление растворов больше внешнего, растворы движутся в сторону наименьшего давления, обычно вверх, к поверхности земли. При своём движении они используют различные тектонические нарушения, трещины, зоны контактов. По мере удаления растворов от магматического очага температура их падает. В результате падения температуры и реакций с вмещающими породами гидротермы отлагают свой груз в виде минералов. Выделение минералов из водных растворов и представляет собой сущность гидротермального процесса.
Поскольку гидротермы обычно движутся по трещинам, форма большинства гидротермальных минеральных тел жильная. Главнейшим жильным минералом является кварц.
Экзогенные процессы минералообразования. В поверхностной зоне земной коры происходит мощный процесс разрушения минералов и горных пород. Совокупность явлений химического и физического разрушения носит общее название выветривания.
Процессы выветривания. Процессы выветривания приводят к механическому разрушению и химическому разложению пород и минералов.
Агентами выветривания являются вода и ветер, колебания температуры вблизи поверхности, кислород и углекислота воздуха, жизнедеятельность организмов. Интенсивность выветривания также зависит от климата, рельефа местности, химического состава пород и минералов.
В результате физического выветривания происходит механическое разрушение пород и минералов - их дезинтеграция. Обломочный материал либо остаётся на месте, либо переносится водными потоками. Новых минералов при этом не образуется, но в результате механического разрушения, переноса и отложения образуются россыпи - важный источник многих ценных минералов.
При химическом выветривании происходит химическое разложение минералов и образуются новые минералы, устойчивые в поверхностных условиях.
Большое значение имеют процессы выветривания в рудных месторождениях. Во вскрытых эрозией рудных жилах первичные рудные минералы, в особенности сульфиды, легко разрушаются и переходят во вторичные, окисленные минералы - сульфаты, окислы, карбонаты и другие соединения.
В результате образуются зоны окисления сульфидных месторождений, или зоны "железной шляпы".
Главным минералом зоны окисления является лимонит.
Ниже уровня грунтовых вод следует зона цементации, или вторичного сульфидного обогащения, за которой находятся первичные не окисленные руды. В зоне цементации воды содержат сероводород и серную кислоту; в них отсутствует свободный кислород. Сульфаты металлов реагируют с первичными рудами, в результате чего образуются вторичные руды.
Осадочный процесс. Разрушенные в результате выветривания огромные массы горных пород и минералов перемещаются текучими водами. При этом происходит сортировка материала и его отложение. Так образуются механические остатки, имеющие очень широкое распространение.
Химическое осаждение минералов может происходить как из истинных так и из коллоидных растворов. Из пересыщенных растворов вещества выпадали в осадок. Таково происхождение различных солей: гипса, галита, карналлита и др. Это - химические остатки.
Большую роль в разрушении минералов и горных пород и в их новообразовании играют живые организмы, главным образом различные бактерии. Поэтому можно выделить биогенный или точнее биохимический процесс. Установлено участие организмов в образовании фосфоритов, самородной серы, руд железа и марганца. Минералы, образовавшиеся при участии организмов предложили называть биолитами. К биолитам можно отнести и породы, например, карбонатные (известняки, мел), которые образовались в результате скопления организмов с известковым скелетом, а также каменный уголь, торф и др.