Эффектов резонансного поглощения в физики очень немного - ферромагнитное, парамагнитное, электронное, гамма-поглощение... Теперь к этим, уже известным фундаментальным эффектам можно прибавить и акустическое резонансное поглощение.
Мне хотелось бы напомнить, что физика - это прежде всего, совокупность физических эффектов и явлений, и каждый из них - это как бы кирпичик самого здания физики. Каждый из таких "кирпичиков" имеет ценность для процесса познания независимо от того, насколько он оказался понятым при своем обнаружении. Как известно, многие из известных физических эффектов на сегодняшний день воспринимаются на чисто феноменологическом (констатационном) уровне. Что, впрочем, не мешает их использовать. Резонансные поглощения занимают особое место среди физических эффектов, поскольку с их помощью как раз и происходит понимание других эффектов и явлений.
Одним из результатов того, что был обнаружен эффект АРП, было то, что удалось выяснить смысл коэффициента k в формуле (1), который, как оказалось, есть не что иное, как скорость поперечных волн Vсдв. И таким образом, возник наконец-то метрологически корректный способ определения скорости Vсдв. И формула (1) приобрела вид:
h=Vсдв/f0 (1’)
При этом оказалось, что поперечные волны - это совсем не то, что имел в виду Пуассон. Поперечный (сдвиговый) процесс - это мнимая (реактивная) часть поля упругих колебаний. И сразу стали понятными некоторые наблюдаемые при сейсмоработах эффекты. В частности, чрезвычайно низкое затухание упругих волн при распространении их вдоль геологических структур. Здесь получается замечательная аналогия с электромагнитным полем...
Электромагнитное поле характеризуется реальной (активной) и мнимой (реактивной) составляющими. Реальная часть отвечает за активные потери - нагрев, механическая работа. Мнимая же отвечает за распространение поля. Затухание этой (мнимой) части поля совершенно незначительно. Известно, например, что с помощью одноваттного передатчика радиолюбители связываются на предельных расстояниях, вплоть до противоположных точек Земли. Точно так же происходит и при распространении поля упругих колебаний. Сейсмосигнал (а он всегда имеет вид затухающего гармонического процесса) формируется мнимой (поперечной) составляющей поля, и затухание его весьма незначительно. То есть все сейсмосигналы, принимаемые различными сейсмоприемниками при сейсмоработах, сформированы поперечными волнами.
Но, в конце концов, ведь получают же при сейсмоработах сигналы, которые вполне могут оказаться эхо-сигналами, пусть спектрально и неидентичными зондирующему импульсу. И если эти эхо-сигналы приходят через какие-то там секунды, значит, они являются отражением от каких-то глубоко залегающих границ. Вот эта логика и заставляет сейсморазведчиков искать, от каких именно находящихся на больших глубинах отражающих поверхностей отразился зондирующий сигнал. Однако на самом деле, это не совсем так.
Еще раз отметим, что при ударном воздействии (при сейсмоработах) распространяется не сам импульс, а возникшие в структуре собственные колебания. Они действительно распространяются по законам геометрической оптики, но только в пределах этих геологических структур. И когда при проведении сейсморазведочных работ делается заключение о том, что эхо-сигнал получен с какой-то глубины, то на самом деле, это не так. Получаемый сигнал - это эхо-сигнал, но от границы той плоскопараллельной геологической структуры, в которой сформировался данный, конкретный колебательный процесс. Это очень просто проверяется. Если смещение сейсмо-косы в какую-то сторону приводит к изменению момента прихода эхо-сигнала на время, соответствующее этому смещению, то, очевидно, придется прийти к выводу о том, что эхо-сигнал приходит не из глубины, а сбоку. Но если эхо-сигнал приходит не снизу, а сбоку, то становится понятным, почему сейсморазрез никогда не соответствует реальному геологическому разрезу.
Далее, еще одна проблема. Сейчас сейсморазведчики возлагают большие надежды на применение методик, сориентированных на использование трехкомпонентных сейсмоприемников. Даже если абстрагироваться от того, что на сегодняшний день не существует технических средств для аттестации этих приемников, то все равно, надежды эти безосновательны. Дело в том, что при распространении собственных упругих колебаний вдоль соответствующей структуры ориентировка направления смещения колеблющихся частиц носит случайный характер, и поэтому даже если бы многокомпонентные сейсмоприемники действительно существовали (а метрологи утверждают, что на сегодняшний день это невозможно), применение их все равно не имеет смысла. И в этом смысле, то, что начали применять трехкомпонентные сейсмоприемники, по-прежнему не подлежащие метрологической поверке, но стоимость которых достигла $3000 за штуку - не признак ли это большой растерянности?
Согласно известным фундаментальным положениям методологии развития научного познания, исследовательский метод, основанный на новом физическом эффекте, обязательно становится источником принципиально новой информации. Именно так и произошло с методом спектрально-сейсморазведочного профилирования (ССП). Видимо, поскольку в основе метода ССП оказался не один, а несколько новых физических эффектов и явлений, он оказался источником большого количества принципиально новой информации.
Границы, выявляемые методом ССП, представляют собой поверхности, по которым возможно проскальзывание соседствующих пород, а также микротрещины и зоны повышенной микротрещиноватости. Подобного рода границы и объекты раньше не выявлялись никакими другими исследовательскими методами, и, как результат, была получена принципиально новая геологическая информация. С помощью метода ССП оказалось возможным выявлять зоны тектонических нарушений.
Необходимо отметить, что тектонические нарушения, описания которых присутствуют во всех геологических и геофизических учебниках, на самом деле, раньше выявлять было просто нечем. В результате, чисто умозрительно выведенные свойства зон тектонических нарушений оказались совершенно не такими, как это оказалось в реальности. Так, согласно устоявшемуся мнению, при мощности осадочного чехла, превышающей какие-то там сотни метров, тектонические разрывные нарушения в кристаллических породах никак не влияют на инженерные сооружения. Однако оказалось, что это не так. Влияние на инженерные сооружения со стороны тектонических нарушений с увеличением мощности осадочного чехла не уменьшается.
Свойства горных пород в зонах тектонических нарушений оказались настолько неожиданными, и влияние их настолько огромно на многие стороны нашего бытия, что со временем безусловно будут пересмотрены самые основы горной и строительной наук, геоэкологии и гидрогеологии. Дело в том, что, как оказалось, горные породы в зонах тектонических нарушений, строго говоря, не являются твердыми средами. Это, как бы, твердые жидкости. Будучи в состоянии повышенной микронарушенности на всю мощность осадочного чехла, осадочные породы в зонах тектонических нарушений обладают пониженной несущей способностью и повышенной проницаемостью. Эти свойства были дополнены учеными Института горного дела УрАН РФ (Екатеринбург, проф. Сашурин А.Д.), обнаружившими наличие в зонах тектонических нарушений пульсации с амплитудой до 10 см. С учетом этого эффекта становится понятно, почему, скажем, те же трубы не просто провисают в зонах тектонических нарушений, а рвутся. Естественно, так и будет, если они постоянно пульсируют и работают, стало быть, на усталость.
Несущая способность грунта в зонах тектонических нарушений не просто имеет пониженное значение, но значение это уменьшается после начала строительных работ. В результате, сооружение, возведенное в условиях прочного грунта, со временем начинает разрушаться за счет того, что часть его фундамента начинает ускоренно уходить в грунт.
Повышенная проницаемость пород в зонах тектонических нарушений, с одной стороны, имеет своим следствием то, что при бурении там может быть получена вода. С другой же стороны, эти зоны характеризуются повышенным выходом глубинных газов, что формирует геопатогенные зоны. Как показывает статистика, проживание в геопатогенных зонах существенно увеличивает вероятность тяжелых заболеваний и уменьшает длительность жизни. И, наконец, если в зоне тектонического нарушения оказывается какое-либо захоронение токсичных веществ, неизбежна потеря герметичности этих хранилищ и проникновение этих веществ на большие глубины и расстояния.
Разрывные тектонические нарушения в планетарном масштабе являются аналогами наших кровеносных систем. Они являются как бы каналами, по которым распространяются жидкие и газообразные вещества по всей планете. А осадочные породы над нарушениями соединяют (за счет повышенной проницаемости осадочных пород) тектонические нарушения с дневной поверхностью. Известны случаи, когда захороненное вещество проявляется на очень больших расстояниях от хранилища. Теперь физика этого явления стала понятной.
Кроме того, зоны тектонических нарушений характеризуются повышенными значениями добротности сейсмосигнала. То есть сейсмосигнал может иметь вид очень долго незатухающей синусоиды. Это приводит к тому, что при наличии вибрационного воздействия в этих зонах могут возникать резонансные явления, и как следствие, так называемые горные удары или техногенные землетрясения. Известны случаи внезапных разрушений насосных станций, железнодорожных путей, кузнечных цехов, электростанций, ТЭЦ... Все эти разрушения сопровождаются тем, что разрушающиеся сооружения быстро, толчкообразно уходят в грунт. Один из таких случаев - Чернобыльская АЭС. В момент разрушения 4-го блока ЧАЭС сейсмологами были зарегистрированы два толчка, о происхождении которых споры продолжаются до сих пор. Дополнительным подтверждением того, что 4-й блок ЧАЭС оказался в зоне разлома, является то, что саркофаг, возведенный над ним, неуклонно уходит в грунт.
Основы спектральной сейсморазведки возникли примерно четверть века назад, и к настоящему времени этот вид геофизики достиг уровня самостоятельного и надежного метода для получения важнейшей геологической и инженерно-геологической информации. Более того, информация, получаемая с помощью этого метода оказалась ключевой для прогнозирования техногенных катастроф, что очень своевременно, учитывая растущую их вероятность и состояние экологии.
Список литературы
Гликман А.Г. "Физика и практика спектральной сейсморазведки"