Смекни!
smekni.com

Распределение Fe2+/Mg отношения в системе расплав - шпинель - оливин (стр. 1 из 7)

(по опубликованным экспериментальным данным); неравновесность составов оливин – шпинелевых включений как показатель возможного твердофазного генезиса алмазов.

Г.П.Пономарев, М.Ю.Пузанков

В результате обработки большого количества опубликованных экспериментальных данных получены простые линейные зависимости равновесного распределения Fe2/Mg отношения между сосуществующими основным - ультраосновным расплавом и кристаллами шпинели и оливина для широкого диапазона составов, давлений до 1,5 Гпа, при варьирующей температуре. Численная оценка равновесности распределения Fe2/Mg отношения позволяет выделять природные оливин-шпинелевые парагенезисы магматического (расплавного) происхождения и отличать их от оливин-шпинелевых пар, изменивших свои составы при метаморфизме, или имеющих метаморфический генезис.

Такая оценка выявляет неравновесность с магматическим расплавом шпинелевых и оливиновых включений в алмазах Якутской кимберлитовой провинции, что указывает на возможный твердофазный рост вмещающих их кристаллов алмаза в мантийных(?) условиях. В коровых условиях твердофазным ростом микрокристаллов алмаза во время палеоземлетрясений можно объяснить их генезис на месторождении Кумды-Коль (Казахстан). Выделен ряд признаков для прогноза и поиска аналогичных месторождений в областях развития гранито-гнейсовых куполов. В частности, в Камчатском регионе подобные рудопроявления (месторождения?) могут существовать в Срединном Камчатском массиве (Хангарский гранито-гнейсовый купол).

В породах базит-гипербазитового ряда оливин является типичным породообразующим силикатом, а минералы группы шпинели - преобладающими акцессориями. В генетических моделях для пород этого ряда часто используются числовые зависимости, связывающие составы этих минералов с условиями их образования и последующими изменениями. Исследования ведутся по трем направлениям: эксперимент в контролируемых условиях; термодинамическое моделирование; анализ природных оливин - шпинелевых парагенезисов.

В области между ликвидусом и солидусом по экспериментальным данным получены распределения Fe2+/Mg отношения в системах расплав - оливин и расплав - шпинель; в субсолидусной - в системе оливин-шпинель путем моделирования и привлечения данных по природным парагенезисам. В системе расплав - оливин при атмосферном давлении в условиях контролируемых температуры и фугитивности кислорода калибровочная зависимость для Fe2+/Mg была получена П.Редером и Р.Эмсли [89]. По опубликованным данным экспериментальных исследований с подобным же контролем условий Г.П.Пономаревым и его соавторами [53] установлена числовая зависимость, связывающая Fe2+/Mg отношение в основном - ультраосновном расплаве и шпинели. При этом, благодаря учету влияния содержаний Ti в шпинели, коэффициент корреляции составил 0,98. Распределение Fe2+/Mg между оливином и шпинелью в субсолидусной - солидусной области, с учетом влияния некоторых элементов, было откалибровано рядом исследователей как геотермометр [80,87,88,90,92] и предложено в качестве геоспидометра [88]. Однако для многих базит-гипербазитовых пород применение указанных выше зависимостей ограничено влиянием неучтенного давления и ошибками метода. Кроме того, можно указать и на то, что при кристаллизации, гибридизме, остывании расплавов и последующих метаморфических преобразованиях пород происходит изменение составов стекол и расплавных включений в минералах, а также и самих минералов. Первоочередной задачей данной работы было частичное снятие этих ограничений и получение критерия для отличия магматических (равновесных и неравновесных) OL - SP парагенезисов от немагматических. Необходимость и важность такого критерия для корректировки петрологических выводов очевидна. Одно из приложений имеет следствия, которые, ввиду их большого прикладного значения, несомненно, заслуживают более подробного рассмотрения. Установленная на основании полученных в первой части этой работы зависимостей, неравновесность OL-SP включений в кристаллах алмаза Якутской кимберлитовой провинции, позволяет предположить их общий твердофазный генезис. Рост алмаза в твердой среде возможен не только в мантийных, но и в коровых условиях, о чем свидетельствует ряд экспериментальных результатов [12,24,82]. Такая возможность, по-видимому, реализована в микрокристаллах алмазов месторождения Кумды-Коль (Казахстан). Обсуждение генетической модели роста таких микрокристаллов и критериев поиска месторождений, подобных месторождению Кумды-Коль, и завершает данную работу.

Использованные экспериментальные данные.

Из опубликованных работ были выбраны [77,83,85,91,93,97,98,99,100], удовлетворяющие следующим условиям: эксперименты проводились при атмосферном давлении с контролем температуры и фугитивности кислорода, приведены полные составы сосуществующих расплавов (стекол), шпинелей и оливинов. Был сформирован массив, состоящий из 92 точек многомерного пространства признаков. Каждая такая точка представляет собой как бы объединенный "анализ" - матрицу, состоящую из пересчитанных на атомные количества содержаний химических элементов в стеклах, шпинели и оливине, значений температуры и фугитивности.

Методика обработки данных. Включает пересчеты первичных составов стекол, шпинелей и оливина, полученных зондовым методом, и дальнейшую математическую обработку методом наименьших квадратов.

Составы стекол. В имеющихся составах стекол содержания FeO и Fe2O3 (если такое имелось, в виде весовых % окислов) пересчитывались в FeO (общее). Затем разделение на FeO и Fe2O3 проводилось по обобщенной формуле, предложенной в [10]. После этого рассчитывались атомные количества элементов: сначала с учетом содержания кислорода отношение K/O, где:

K = Si + Ti + Al + Cr + Fe3+ + Fe2+ + Mn + Ca + Na + K; O - кислород.

K/O варьировало от 41/59 до 38/62. Затем количество атомов кислорода вычиталось, а содержания элементов вновь пересчитывались на 100%.

Составы шпинелей и оливина. В имеющихся составах шпинелей содержания FeO и Fe2O3 также пересчитывались на FeO (общее), которое вновь разделялось на окисную и закисную формы по стехиометрии, и с учетом ульвошпинелевого компонента. Затем, составы шпинелей и оливина пересчитывались на атомные проценты, содержание кислорода вычиталось и остаток катионов нормировался до 100%.

При дальнейшей обработке мы исходили из отсутствия структурного мотива в расплавах, статистически беспорядочного распределения катионов в кристаллах шпинели между октаэдрическими и тетраэдрическими позициями, и из того, что распределение Fe и Mg по позициям M1 и M2 в оливине близко к случайному. Исследовалась связь между совместными значениями Fe2+/Mg в разных фазах, аппроксимированная по методу наименьших квадратов [70] линейной зависимостью. По получаемому уравнению вида y = A + B x ; где: x - известное значение Fe2+/Mg в данной фазе; y - оцениваемое значение Fe2+/Mg в другой фазе; A и B - постоянные коэффициенты, вычислялось значение Fe2+/Mg в другой фазе. Сила связи оценивалась по величине коэффициента корреляции (R). По R оценивались также и влияние температуры (T), фугитивности кислорода (fO2) и активности элементов в расплаве. Стандартная ошибка (

) определялась по уравнению:

( di ) / (n-2) ], где di = yi (истинное) - yi (расчетное)

Определялось также и значение абсолютной ошибки (

). Распределение стандартной ошибки практически во всех случаях соответствовало гауссовскому, что позволило отбросить точки, для которых квадратичное отклонение было > 3
. Их количество составляло ~ 4-7% от общего числа точек. Для оставшегося массива процедура расчетов вновь повторялась; эти результаты приведены в тексте. Все расчеты проводились с помощью программы "FASTVIEW" (автор - Ананьев В.В.).

Используемая форма представлений составов (атомные количества катионов) кажется более целесообразной в сравнении с традиционными. В таком виде данные точнее отражают как содержания элементов в каждой из фаз, так и отношения содержаний элементов между фазами, т.к. пропорциональны числу атомов, а не их весовой или молекулярной долям, что существенно для легких элементов типа Na и элементов с валентностями

2. Эта форма представления составов привычна для восприятия из-за небольших отличий цифровых значений от окисных весовых процентов, в отличие от атомных количеств с участием кислорода. Расчитываемое по валентностям количество кислорода является предельным для данной породы или расплава того же состава. В силикатных стеклах (расплавах) выделяются 3 разновидности кислорода: мостиковый (00), немостиковый (01-) и свободный (02-) [9]. Концентрации каждой из этих форм кислорода зависят от состава расплава, его структуры, состава флюида, температуры (T) и давления (P). Концентрация мостикового кислорода должна быть меньше предельной из-за существования наряду со связью
Si-O-Si
связи
Si-Si
"кислородная вакансия" [1] хотя не ясно, насколько велика их доля и как они зависят от вышеперечисленных параметров. Растворенная в расплаве Н2О (на примере альбитовой системы), по данным М.Б.Эпельбаума [76], влияет на соотношение мостиковой и немостиковой форм кислорода. По расчетам [43] такие флюидные компоненты, как Н2О и Н2, в процессе дегазации базальтовых расплавов увеличивают фугитивность кислорода, что должно, вероятно, сказываться и на концентрации различных форм кислорода в расплаве. F и Cl, постоянные участники магматического процесса, в расплавах образуют ионные группировки с катионами металлов [2,33], т.е. выполняют роль "свободного" кислорода. Эти наблюдения позволяют рассматривать рассчитываемое по валентностям содержание кислорода в предполагаемом расплаве как максимально возможное и без ущерба исключать из данных по составам. Кроме того, операция вычитания рассчитанного количества кислорода (практически постоянная величина: 59-62) и нормирование до 100% остатка с дальнейшим поиском корреляции между процентными величинами численно соответствует [62] нормированию на постоянную величину, кратную содержанию кислорода, и поиску истинного коэффициента корреляции между процентными величинами. В перспективе желательно научиться рассчитывать истинные концентрации трех форм кислорода в расплавах и знать, как связана фугитивность кислорода с концентрациями их в расплаве, и как влияет концентрация каждой из форм кислорода в расплаве и фугитивность кислорода в целом на его вязкость и т.д.