Смекни!
smekni.com

Глубокие длиннопериодные землетрясения под Ключевским вулканом, Камчатка (стр. 4 из 5)

Спонтанная полимеризация метастабильной магмы в замкнутом объеме, каковым является магматическая система на глубине 20-40 км, может происходить по следующей схеме, которая представляет собой процесс с обратной связью.

Пусть в некотором объеме, занимаемом метастабильной магмой, началась спонтанная полимеризация и, следовательно, газоотделение. Образование свободной газовой фазы и рост газовых пузырьков приводит к возрастанию давления в этом объеме и снижает уровень метастабильности и, следовательно, ведет к замедлению и приостановке процессов полимеризации и газоотделения. Рост газовых пузырьков происходит до достижения ими состояния механического и химического равновесия с окружающей их магмой. После окончания роста пузырьков давление в магме постепенно приходит к первоначальному значению, и процессы полимеризации и газоотделения начинаются вновь. Скорость роста пузырьков в магме зависит от многих факторов, главные из которых: давление пересыщения магматического расплава, вязкость магмы, коэффициенты диффузии и теплопроводности. Таким образом, в магме в области спонтанной полимеризации периодически будут генерироваться импульсы давления с частотой, зависящей от вышеперечисленных факторов и определяемой внутренними свойствами магмы. Эти импульсы давления на стенках трещины формируют сейсмические волны, период колебаний в которых определяется длительностью самого импульса давления в магме и размерами трещины.

Исходя из предлагаемой гипотезы, попытаемся связать период сейсмических колебаний ГДП землетрясений с физическими характеристиками магматического расплава и сравнить с экспериментальными данными. Для этого определим основные факторы, влияющие на рост пузырьков.

Так как теплопроводность играет заметную роль только для больших пузырьков (а в нашем случае мы имеем дело с пузырьками микронных и субмикронных размеров), процесс роста пузырьков будем считать изотермическим. Для того чтобы определить, какому из оставшихся факторов (диффузия и вязкость) принадлежит основная роль в длительности формирования импульса давления в магме, рассмотрим влияние диффузии и вязкости на рост пузырьков в магме независимо друг от друга. Расчеты будем проводить для водонасыщенного базальтового расплава. Вначале оценим влияние вязкости.

Решение задачи о динамике газовых пузырьков основывается на уравнении Рэлея-Тейлора c учетом вязкости [42]:

(1)

где R - радиус пузырьков,

m - плотность магмы,
- кинематическая вязкость магмы, P - давление в магме, P1 - давление в газовом пузырьке.

Для того чтобы оценить время

релаксации избыточного давления, возникающего при расширении пузырьков, пренебрегаем первыми двумя членами в уравнении (1) вследствие их малости:

(2)

Условие механического равновесия в газовом пузырьке будет определяться уравнением:

(3)

где

- коэффициент поверхностного натяжения.

Подставляя выражение (3) в (2), получим уравнение:

,

из которого интегрированием по времени можно определить длительность импульса:

=
. (4)

Для водонасыщенных базальтовых магм на глубине 20 - 40 км по данным [18] вязкость

=
m
~ 101 -102 Пуаз (1-10 Па/с), а
102 дин/см (10-1 Па/c) [17]. Как следует из формулы (4), для
~ 1с радиус R возникших в магме пузырьков должен составлять 10-1-10-2см, что на несколько порядков превосходит расчетные [20] и экспериментальные [43] данные. Следовательно, время
в нашей модели должно определяться другими параметрами.

Рассмотрим теперь процесс роста пузырьков газа исходя из уравнения диффузии:

(5)

где D - коэффициент диффузии, (для базальтовой магмы Ключевского вулкана при P = 5000 атм ( 5.108 Па ) D ~ 10-9 м2/c [16]); dM - масса газа, диффундирующего в пузырек за время dt через поверхность пузырька ds; d

g/dx - градиент концентрации свободного газа в магме, равный:

где W(P) - весовая концентрация растворенного в магме газа, dW(P)/dP

4*10-10 г/ Па [16].

Из уравнения (5) следует, что длительность импульса в магме будет зависеть от коэффициента диффузии и концентрации свободного газа в магме по формуле:

.

Для наших оценок о влиянии диффузии на рост пузырьков в первом приближении будем считать, что d

g/dx = const и, учитывая, что dM= 4/3
R3 d
,
- плотность газа в пузырьках, а ds=4
R2 , из последнего уравнения получим, что:

(6)

Средний радиус образовавшихся пузырьков R немного превышает радиус газовых зародышей при нуклеации, размеры которых можно оценить при следующем условии. Будем считать, что появление и рост пузырьков происходят, в основном, за счет сжимаемости магмы. Тогда можно записать, что:

R3N и

где

- модуль объемного сжатия, 1/
~ (1-3) 109 Па [17,18]; N - количество газовых зародышей в 1 см3 магмы, N ~ (1/dx)3.

Подставляя известные значения в формулу (6), мы, при N ~ 109-1012, получим, что время релаксации

лежит в пределах наблюдаемых нами периодов P и S волн.

Исходя из гипотезы Верхугена [44] об образовании пепла, количество пузырьков N в единице объема должно соответствовать минимальному размеру пепловых частиц. В наших расчетах минимальный размер пепловых частиц будет составлять ~ 1 Мкм, что попадает в диапазон мельчайших пепловых частиц, образующихся при извержениях базальтовых вулканов [14].

Проведенные оценки нам представляются вполне разумными и позволяют считать основным фактором, определяющим скорость роста пузырьков в магме на начальной стадии, процесс диффузии.

Энергетические оценки по формуле dE = PdV + VdP показывают, что для того, чтобы произвести землетрясение энергетического клаcса KS

6 по предлагаемой нами гипотезе, необходимо, чтобы в течение 0,5-1 секунды на глубине ~ 30 км произошла спонтанная полимеризация сопровождаемая выделением газа в объеме магмы ~ 10 м3 с уровнем пересыщения ~ 1 атм. (105 Па).

В рамках предлагаемой модели достаточно хорошо можно объяснить почти все особенности ГДП землетрясений, выявленные при их предварительном исследовании. Непонятным пока остается только большой интервал глубин (20-35 км), в котором происходят ГДП землетрясения. Но если считать, что на глубине 20-35 км магма находится в насыщенном состоянии, то при движении магмы вверх отдельные ее порции достигают метастабильного состояния на всем интервале глубин и, таким образом, вопрос об интервале глубин ГДП землетрясений становится легко объясним. В этом случае понятным становится роевой характер появления ГДП землетрясений.

Образование газовых пузырьков на глубинах 20-40 км приводит к повышению давления в магматической системе и, как следствие, миграции вверх очагов землетрясений в слоях 2-3.