Следует отметить, что в условиях высоких давлений, т. е. в глубоких зонах термоаномалий, эндогенный пар по своему физическому состоянию весьма близок к жидкости, так как плотность его близка к единице. Это, по сути дела, очень горячий минерализованный и газонасыщенный водный раствор — флюид. Термин “пар” в этом случае сохраняет свое значение только в термодинамическом смысле этого слова.
Изложенная концепция получила практическое подтверждение в ходе эксплуатации месторождения Вайракей. Отбор большого количества пароводяной смеси из скважин в течение 1951 —1958 гг. повлек за собой существенное понижение уровня перегретых вод. Это вызвало подтягивание к участку эксплуатации пара из соседних районов, находящихся в пределах той же термоаномалии. В результате среднее теплосодержание водных масс в системе Вайракей повысилось с 245 ккал/кг в 1951 г. до 305 ккал/кг в 1958 г. (Fisher, 1964).
Вопрос о происхождении термоаномалий сводится, таким образом, к выявлению источников эндогенной воды. Он подвергается всестороннему обсуждению, однако большинство построений, как правило, не выходит из рамок классической схемы: в качестве генератора водного флюида принимается водосодержащая магма, попавшая в верхние горизонты и отделяющая воду в условиях относительно низкого давления. Учитывая, что, по имеющимся представлениям, отделение воды не превышает в среднем 5% общей массы магмы, объемы магматических тел, питающих гидротермальные системы паром, должны быть поистине колоссальными. Ведя расчет так же, как и при обсуждении предыдущей схемы, получим для Торфаёкул 1500 км3 магмы, для Долины Гейзеров, Вайракей и Вайотапу — от 270 до 390 км3 и для Паужетки — 60 км3.
При таких огромных объемах магматических тел в условиях низкого давления могут находиться только верхние их части, и только они, очевидно, и могут быть активными в отношении отделения воды. Внутренние" же части больших интрузивов не могут принимать активное участие в отделении летучих. Банвелл (1957), пытаясь устранить это препятствие в построениях, предлагает рассматривать магматические тела, находящиеся в верхних горизонтах земной коры как часть конвекционной магматической системы, уходящей своими корнями очень глубоко и непрерывно получающей свежий материал. Разумеется, такая гипотеза должна быть специально обоснована; однако независимо от ее справедливости попытаемся, на основании имеющихся данных, хотя бы грубо оценить величину давления, при котором должна отделяться вода от магмы в существующих условиях, и саму возможность этого процесса.
Выше указывалось, что показатели для теплового потока в пределах термоаномалий в десятки и даже сотни раз превышают средние показатели для Земли. В таких условиях восходящее движение флюида сопровождается относительно небольшими теплопотерями. По расчету они не превышают 10% общего потока тепла в термоаномалиях и относятся, естественно, к их краевым частям. Следовательно, движение пара в центральных частях термоаномалий при установившемся режиме происходит в условиях, -близких к адиабатическим. Это дает возможность применить формулу связывающую начальное и конечное состояния водяного пара. В этой формуле Т0 и Р0 — начальные параметры (обстановка отделения пара от магмы), Т и Р— конечные параметры (обстановка у основания гидротермальных систем).
Как уже говорилось, температура у основания гидротермальных систем не превышает 400° на глубине 3 км, что соответствует приблизительно 300 атм. Если эти данные выбрать в качестве конечных параметров, то давление, при котором вода должна отделяться от магмы, будет определяться ее температурой, равной в момент отделения температуре магмы. Полагая, что температура гранитной магмы в земной коре может находиться в диапазоне от 600 до 1000°, получим давление от 900 до 3900 атм. Но при таких давлениях, как следует из экспериментальных данных (Хитаров, 1963), гранитная магма может удерживать воду в количестве от 3 до 7 вес. %. Р1ными словами, рассчитывать на отделение воды от магмы в количестве 5% от ее массы совершенно не приходится, и сама возможность такого процесса в рассмотренных условиях крайне незначительна. Отделение воды от магмы при высоких давлениях возможно только в том случае, если магма пересыщена водой или, что вероятнее, если через магматическое тело идет фильтрация водного флюида.
Все вместе взятое заставляет весьма критически относиться к представлениям о ведущей роли магматических тел в гидротермальном процессе. Корни молодых экструзий, равно как и гипотетические интрузивные тела, нельзя считать источниками мощной и длительной гидротермальной деятельности. Формирование рассмотренных термоаномалий в земной коре обусловлено восходящим потоком горячего флюида, генерация которого, в общем случае, ие связана с находящимися здесь магматическими телами, а является следствием самостоятельного глубинного процесса. Магматические тела, внедрившиеся в гидротермальные системы, могут оказывать на них активное влияние сравнительно непродолжительное время. В недрах термоаномалий они, по-видимому, ограничиваются пассивной ролью “флюиде/проводников” (определение Г. Л. Поспелова, 1963).
Что же касается вулканических аппаратов, то здесь магма подходит непосредственно к поверхности и, если она является водосодержащей, неизбежно должна дегазироваться. Как следствие возникает мощная и очень концентрированная фумарольная деятельность, продолжительность которой поддерживается поступлением в результате извержений свежих порций водосодержащей магмы.
Гидротермальная деятельность и "кислый вулканизм"
В общем тепловом балансе вулканических областей гидротермальная деятельность занимает подчиненное положение (Поляк, 1964). С этой точки зрения ее следует считать производной вулканизма. Однако в конкретных районах своего проявления гидротермальная деятельность обнаруживает энергетический эффект, не уступающий собственно вулканическим явлениям, в частности — явлениям кислого вулканизма. Поскольку эти процессы приурочены к общей территории и протекают в рамках одного и того же времени, можно заключить, что между ними имеется парагенетическая связь. В таком случае естественно предположить, что некоторые показатели, свойственные гидротермальному процессу, характеризуют в известной мере и процессы кислого вулканизма. Это относится, в частности, к -величине теплового потока на термоаномалиях и ж термическому состоянию их недр. Следующий пример подтверждает это положение.
Банвелл (1957) специально останавливался на двух извержениях в районе оз. Таупо, происходивших 1700 и 3000 лет назад и давших по 10 км3 пеплового материала. Он заключает, что современная спокойная деятельность горячих источников, гейзеров и фумарол в этом районе может быть лишь отдельной фазой целого цикла, в течение которой накапливался горячий материал для создания следующей ступени извержения. Действительно, количество тепла, вынесенное пепловым материалом за одно извержение, если принять его среднюю температуру за 800° и среднюю плотность за 1,5 г/см3, составляет З х 1015 /скал, в то время как гидротермы района за 1500 лет выносят около 6,7 х 1015 ккал. Таким образом, если из общей величины теплового потока в пределах рассмотренной термоаномалии аккумулируется около 30% тепла, то этого уже достаточно для накопления горячего материала в указанных масштабах.
Примерно такие же соотношения получаются при сравнении масштабов гидротер-мальной деятельности и явлений кислого вулканизма в пределах всей зоны Таупо за четвертичный период (1 млн. лет). Общий объем четвертичных вулканогеиных фаций достигает здесь, по данным Хили (1964), 4 тыс. куб. миль. Этот объем может быть достигнут, если в пределах всей зоны происходила аккумуляция тепла, сопровождавшаяся плавлением пород, равная в среднем 200—300 тыс. ккал/сек. Для сравнения укажем, что только четыре гидротермальные системы (Вайракей, Таупо, Ротокава и Вайотапу) выносят ежесекундно около 430 тыс. ккал/сек (Banwell, 1963).
С этих позиций следует рассмотреть вопрос о том, не может ли главный эндогенный агент гидротермального процесса — водный флюид--обусловить такую термическую обстановку в верхних горизонтах земной коры, чтобы могли осуществиться и явления кислого вулканизма. Фактических данных о начальной температуре флюида не имеется. Можно лишь предполагать, что в вулканических областях она, вероятно, приближается к 1000—1200°, т. е. к температурному уровню андезито-базальтового вулканизма. В этом случае ориентировочные расчеты по формуле адиабатического расширения пара позволяют ответить на поставленный вопрос утвердительно. Согласно графику, построенному для некоторых усредненных условий (рис. 3), в недрах термоаномалий на глубинах 5,5—10 км температуры должны достигать 600—800°, что обусловлено восходящим флюидом. В зависимости от геологической обстановки указанный диапазон глубин может изменяться как в большую, так и в меньшую стороны.
При таких параметрах, как следует из большого числа экспериментальных данных, в условиях благоприятной обводненности должно происходить расплавление отдельных участков в “гранитном” слое. Расплавление силикатного материала на небольших глубинах может, кроме образования интрузивных тел, сопровождаться прорывом его на поверхность, образованием экструзий, а также взрывными явлениями, приводящими к образованию пемз и спекшихся туфов. Следовательно, горячий водный флюид можно рассматривать как главный агент особой формы вулканизма, в рамках которой взрывные явления, экструзии магмы и гидротермальная деятельность предстают как ассоциация различных проявлений одного процесса.