Р.С. Штенгелов
Принципиальный смысл и формальный механизм его применения - раздельная оценка всех потенциальных составляющих баланса водоотбора: в первую очередь, естественных запасов и естественных ресурсов, а при наличии общих гидрогеологических предпосылок - и привлекаемых ресурсов. Они оцениваются в целом для месторождения (или другой расчетной площади), без определения той водозаборной системы, с помощью которой они могут быть извлечены. Таким образом, по сути это - "потенциальные" ЭЗ; система их отбора должна рассчитываться особо, какими-либо другими способами, которые мы рассмотрим позже.
Возникает вопрос - а для чего же нужен такой "неполноценный" метод ?
- Во-первых, он вполне успешно может быть применен для региональных оценок ЭЗ,
- Во-вторых, он очень продуктивен на ранних стадиях работ на месторождениях (поиски и оценка) для предварительной общей оценки потенциальных эксплуатационных возможностей, т.к. позволяет сравнить их с заявленной потребностью и решить, не нужно ли искать дополнительные площади.
- Наконец, следует добавить, что во всех случаях балансовый контроль, балансовое "сопровождение" любых гидрогеологических расчетов при оценке ЭЗ чрезвычайно полезны и даже необходимы во избежание формальных ошибок и грубых промахов.
Вспомним, что это объем воды, содержащейся в эксплуатируемом пласте в некоторой расчетной области (площадью
).Рассмотрим в общем случае межпластовый водоносный горизонт, обладающий избыточным напором над кровлей
(рис. 1).Рис. 1. К оценке емкостных и упругих естественных запасов |
Очевидно, что полное количество УПРУГИХ запасов можно получить при полной сработке избыточного напора до кровли пласта по всей расчетной площади:
При дальнейшем полном осушении пласта можно дополнительно получить ЕМКОСТНЫЕ запасы в количестве:
Следовательно, в целом полные естественные запасы составляют:
Если пласт ненапорный, то упругого слагаемого в этой формуле нет, только емкостная (гравитационная) составляющая
Это - потенциальные естественные запасы водоносного горизонта; реально же при водоотборе будет использована только некоторая их часть
, так как:- понижение уровня всегда ограничивается тем или иным допустимым значением, т.е. вместо
надо использовать ;- сама форма воронки имеет вид отнюдь не чемодана, поэтому среднее понижение по всей области депрессии заметно меньше, чем
.На практике для балансовых оценок применяют коэффициент использования (извлечения):
, при этом обычно считают ≈ 0.3 ÷ 0.5.Более точно: принять какое-то среднее понижение уровня в пределах воронки; тогда
где - радиус воронки. Приближенно можно доказать, что при понижении в скважине и ее радиусе среднее понижение на площади депрессионной воронки составляет:Поскольку обычно
×102-3 м, ×10(-1) м, то ≈ 3 - 4, откуда .Таким образом, при сосредоточенном водоотборе реальная величина коэффициента использования естественных запасов составляет от 0.1 - 0.15 (для напорных условий, где
) до 0.05 - 0.1 (для грунтовых горизонтов, ).Как добиться увеличения
? Максимально возможным рассредоточением водозабора по площади.Итак, для балансовой оценки потенциальных естественных запасов месторождения нужно:
- оценить характер водоотдачи в пределах ожидаемой величины понижений, исходя из условий залегания водоносного горизонта и возможной глубины депрессионной воронки;
- задаться значениями
Из этих величин параметром является водоотдача; оценивается обычно трудно и ненадежно:
- лабораторные методы: точечные определения, невысокая достоверность экстраполяции и интерполяции на больших площадях месторождений;
- откачки (кустовые!): определяется уровне(пьезо)проводность; обычно получаются заниженные величины емкостных оценок, так как из-за "разнокалиберности" порово-трещинного пространства реальная величина водоотдачи проявляется значительно дольше обычной длительности опытных опробований;
- режимные наблюдения: в принципе лучше, так как наблюдаются и обрабатываются длительные периоды относительно медленного природного нестационарного режима.
Напомнить: в курсе "Гидрогеодинамика" рассматривались вопросы оценки гидрогеодинамических параметров (включая водоотдачу) по данным опытно-фильтрационных (режимных) наблюдений с использованием классической методики Г.Н.Каменского - решение конечно-разностного уравнения фильтрации.
Рис. 2. К обоснованию методики оценки водоотдачи по данным режимных наблюдений на створе скважин в линейном потоке |
ПЕРИОД для расчета - "независимый спад", т.е. пoлное отсутствие питания (истощение горизонта)
СТВОР из 3-х скважин по линии тока (при квазилинейной структуре потока - рис. 2.2) или "конверт" из 5-и скважин, если поток существенно плановый
Баланс расчетного блока 2
Приток :
- расход из блока 1 (
)- уменьшение количества воды в блоке на величину
за время ( в связи со спадом уровня от до )Отток : - расход в блок 3 (
)Балансовое уравнение блока 2
Отсюда :
Как определить
? Используется закон Дарси для линейного потока шириной по фронту 1 м:Наверняка возник вопрос: на какой момент времени брать
- ведь они меняются за период ? Скорее всего, средние значения за расчетный период - например, напор для блока 2: .Очевидные недостатки этого метода, заметно осложняющие его практическое применение:
- Водоотдача вычисляется из невязки расходов, а она, как правило, невелика, поэтому результат очень чувствителен к погрешностям задания значений
, которые, увы, обычно велики. За счет этого могут получаться даже абсурдные результаты - отрицательные или огромные значения .- Вообще, этот метод применим, как правило, лишь в случае безнапорных потоков (гравитационная, т.е. большая, величина водоотдачи); в случае упругого режима (напорные потоки) очень мала
.- Наконец, необходима уверенность в отсутствии питания - иначе балансовое уравнение неверно.
Чтобы уверенно выделить периоды именно "независимого спада", проводят специальный анализ режимных наблюдений (рис. 2.3), основанный на использовании уравнения Майе-Буссинеска для периода спада уровня: