Р.С. Штенгелов
Вспомнить: это - суммарная величина питания горизонта в ненарушенных (точнее - сложившихся к началу эксплуатации) условиях, определяющая расход потока по пласту и расходы разгрузки через все дренирующие границы. Размерность - расход, куб.м/сут.
• Природные формы (механизмы) питания подземных вод: инфильтрация (естественная и техногенная), перетекание, фильтрация из рек ...
• Формы дренирования водоносных горизонтов: родники, рассредоточенная русловая разгрузка в реки (озера, болота, моря...), испарение с поверхности грунтовых вод, транспирация растениями, перетекание.
Естественные ресурсы всегда оцениваются применительно к определенной расчетной площади, являющейся балансово-замкнутым элементом подземного стока, т.е. включающей области питания, стока и разгрузки (водосборный бассейн или система бассейнов).
Методы оценки: а) по РАСХОДУ ПИТАНИЯ, б) по РАСХОДУ ПОТОКА, в) по РАСХОДУ РАЗГРУЗКИ.
a) Оценка ЕР по расходам питания
Оценивается интенсивность (модуль) питания
. Это расход питания на единицу площади в плане, т.е. скорость или слой за расчетный промежуток времени. Размерность: для гидрогеодинамических расчетов - м/сут; в балансовых расчетах обычно - мм/год (для удобства сопоставления с другими элементами водного баланса - например, с интенсивностью атмосферных осадков); в ряде случаев удобной является специфическая размерность л/с на кв.км.При среднем модуле питания
естественные ресурсы, формирующиеся на расчетной площади питания , составляют .Далее будем говорить об инфильтрации - основном процессе питания для первых от поверхности водоносных горизонтов.
Методы оценки интенсивности инфильтрации
1. Экспериментальные: с помощью специальных полевых приборов - лизиметров (идея и техника измерений кратко рассматривалась в курсе "Гидрогеология"). Для нас важно, что при разведке месторождений они практически неприменимы и используются обычно только на научно-исследовательских балансовых стационарных площадках. Почему?
- непредставительные результаты - практически они характеризуют точку, в то время как площади месторождений составляют десятки и сотни кв.км;
- сложно технически в обслуживании и наблюдении; требуется практически непрерывное присутствие обслуживающего персонала, что нереально в экспедиционных условиях разведки месторождений;
- ненадежно при больших глубинах залегания уровня подземных вод;
- неприменимо в условиях, когда зона аэрации сложена скальными породами (не такая уж редкость).
Рис. 1. К обоснованию методики оценки интенсивности инфильтрации по данным режимных наблюдений на створе скважин в линейном потоке |
2. По данным опытно-фильтрационных наблюдений. Существует несколько существенно различных способов использования уровенных режимных наблюдений для оценки питания грунтовых вод.
Используется та же методика Г.Н.Каменского (как для оценки водоотдачи - рис. 1), но для ПЕРИОДА ПИТАНИЯ, т.е. на восходящей фазе режима.
БАЛАНС БЛОКА 2 (рис. 2)
(накопление в емкости)Очевидно, что при подъеме уровней
в противном случае (спад уровней на фоне питания) ("зависимый спад").Определение
возможно, если известна водоотдача:Применение этой методики содержит те же потенциальные погрешности, что и для оценки водоотдачи; дополнительная погрешность образуется за счет параметра водоотдачи.
Нередко после подъема фиксируется период стационарного режима уровней, хотя питание продолжается; это свидетельствует о наступившем равновесии расхода притока к блоку и оттока к дрене:
Такая ситуация выгодна, т.к. оценка инфильтрации может быть выполнена без параметра водоотдачи.
• Другой вариант использования данных режимных наблюдений для оценки инфильтрации - по ОДНОЙ СКВАЖИНЕ, располагающейся в водораздельной области питания.
- фактический подъем уровня в скважине за период питания (рис. 3).Если в вышерассмотренном конечно-разностном уравнении для линейного потока представить (чисто теоретически), что
(т.е. все питание накапливается в расчетном блоке, а не уходит частично к дрене), то подъем уровня составил бы некоторую величину , а график подъема уровня представлял бы собой прямую линию. Оценка величины в этой гипотетической ситуации не составила бы труда:Однако, фактически происходит отток части поступающего питания к дрене (
), поэтому реально меньше, чем : ,т.е. для определения
нужно каким-то образом оценить "невидимую" величину .Тогда
Рис. 3. Теоретический и фактический подъем уровня за период питания |
Есть разные предложения по оценке величины
.1-й СПОСОБ. Предполагается, что:
перед подъемом уровня существовал квазилинейный независимый спад уровня, отвечающий некоторой интенсивности оттока к дрене;
темп этого спада (т.е. интенсивность оттока) сохраняется и в период подъема уровней за счет питания.
При таких допущениях величина
может быть вычислена по линейной экстраполяции темпа спада на период питания (рис. 4).Явное достоинство: простота исполнения.
Явный недостаток: фактически интенсивность оттока при подъеме уровня возрастает, так как увеличивается разность уровней между участком расположения скважины и дреной. Недоучет этого обстоятельства приводит к занижению поправки
и, следовательно, величины .Рис. 4. Расчет поправки на отток линейной экстраполяцией темпа спада, предшествовавшего периоду питания |
2-й СПОСОБ. Учет возрастания интенсивности оттока к дрене может быть выполнен на основе вышерассмотренной модели Майе-Буссинеска.
- Простейший (в расчетном смысле) прием заключается в следующем: для расчетного периода
вычисляется среднее значение напора , после чего поправка рассчитывается как величина истощения за время при данном значении начального напора (рис. 2.8):Значение коэффициента истощения
определяется как угловой коэффициент графика для участка независимого спада, ближайшего к расчетному периоду питания.- Для детализации этого приема (с соответственным уточнением результата оценки) промежуток времени
разбивается на несколько шагов . Для каждого из них определяется свое значение и, как в предыдущем случае, вычисляются частные величины , после чего они суммируются: