3. Океанское марганценакопление
Весьма весомым и аргументированным свидетельством существования древнего океана являются раннепротерозойские хемогенно-осадочные месторождения Fe и Mn руд - крупнейшие носители основной массы мировых ресурсов этих металлов. Д. Шиссель и Ф. Аро предложили новый подход к тектоническому положению крупнейших осадочных бассейнов этого возраста [Schissel and Aro, 1992]. Основываясь на палеореконструкции Д. А. Пайпера [Piper, 1982], предположившего амальгамирование протерозойского суперконтинента между 2000-1800 млн лет, они показали, что большинство крупнейших бассейнов с Fe- и Mn-формациями образовывались в условиях пассивных тектонических окраин без признаков существенного вулканизма, на мелководных континентальных шельфах. Ранний протерозой (2,5-1,9 млрд лет) в истории Земли характеризуется развитием основной массы крупнейших железорудных формаций, составляющих свыше 90% всех мировых запасов. С ними ассоциируют крупнейшие Mn-рудные месторождения в Южной Африке, Бразилии и Индии; только одно гигантское поле Калахари (Южная Африка) содержит более 75% мировых запасов Mn. Такая ассоциация железорудных и марганцевых месторождений имеет прямую связь с океаническим источником этих металлов. Модель образования подобных месторождений подразумевает апвеллинг глубинных восстановленных вод, обогащенных Fe и Mn, в области континентального склона и шельфа и последовательное отложение, сначала Fe-формаций при пониженных величинах редокс потенциала, затем карбонатных и окисных Mn руд, при возрастании окисленности прибрежных вод [Hem, 1972; Krauskopf, 1957]. Она применима и к другим крупным осадочным месторождениям Mn, в частности, к олигоценовым.
Рис. 2. Модель образования Fe- и Mn-рудных формаций при схождении континентальных блоков |
Д. Шиссель и Ф. Аро считают, что глубинные воды протерозойского океана были восстановлены и насыщены растворенными Fe и Mn. Мы придерживаемся иной точки зрения, поскольку в соответствии с данными [Галимов, 1988; Гаррелс, Маккензи, 1974] общая масса воды в океане, а также ее состав, уже 2,5-2 млрд лет назад были близки к современным. К тому же выше были приведены новые данные, свидетельствующие о существовании воды на Земле 3850 млн лет назад [Nutman et al., 1997], т.е. по меньшей мере за 1,5 млрд лет до описываемых событий. Все это означает, что на океанском дне уже тогда мог происходить процесс окисного осадочного рудообразования, сходный с современным. По-видимому, огромные массы Fe и Mn могли быть высвобождены при растворении ЖМО в период образования протерозойского суперконтинента, когда сходящиеся континентальные блоки замкнули часть океана.
Рис. 3. Стратиграфические формации, включающие Mn-отложения, ассоциирующие с Fe-формациями в Южной Африке, Бразилии и Индии |
Принципиальное различие в этих представлениях связано с тем, что в восстановленных морских водах протерозойского океана соотношение Mn и Fe не могло сильно отличаться от соотношения этих металлов в породах ложа (0,017), что не позволило бы сформировать Mn-рудные формации, представленные в таких масштабах. По-видимому, огромные массы Fe и Mn могли быть высвобождены при растворении предварительно сконцентрировавших их ЖМО, и в период образования протерозойского суперконтинента,когда сходящиеся континентальные блоки замкнули часть океана, были выброшены на берег. Сильное сжатие привело к активизации глубинных процессов на океанском дне, следствием их стало возникновение восстановительных условий, несовместимых с сохранностью ЖМО. К тому же все это сопровождалось возникновением сильного апвеллинга и трансгрессией океана. Именно образование гигантских месторождений Mn и Fe руд в условиях пассивных континентальных окраин является геологическим следом внутриокеанических глубинных тектонических событий в раннем протерозое. Возможная модель этого процесса приведена на рис. 2.
Сходство условий отложения, вещественного состава и единое время образования рудных формаций объединяют Южную Африку, Бразилию и Индию в составе раннепротерозойского суперконтинента. В обстоятельной статье Д. Шисселя и Ф. Аро [Schissel and Aro, 1992] дано подробное описание стратиграфических разрезов, приведенных на рис. 3. Кратко оно сводится к следующему.
Наиболее изученная формация Хотазель в Южной Африке показывает 3 цикла образования Fe-слоев, пелитового гематита и смешанных Mn-карбонатных и Mn-окисных слоев, отвечающих трем морским трансгрессиям. В гигантском поле Калахари протяженность Mn-рудного тела достигает 90 км и несет следы 5 эрозионных циклов. Минералогический комитет ЮАР оценивает его ресурсы в 12,7 млрд тонн, что превышает, как уже указывалось, 3/4 мировых запасов.
Из-за метаморфизма и деформаций пород геологические разрезы Бразилии и Индии менее ясны, но стратиграфия метаморфизованных осадков обычно показывает переходы от Fe-формаций к карбонатным марганцевым и затем к марганцевым окисным формациям. Все три последовательности перекрываются регрессивными карбонатными отложениями, которые завершают Fe и Mn седиментацию.
Рис. 4. Пангея раннерифейского времени |
В Бразилии наиболее крупные отложения находятся в провинции Минас Жериас; исторически они были важнейшим мировым источником Mn, но по мере истощения, их значение уменьшилось.
В Индии в провинции Орисса Mn-отложения также ассоциируют с Fe-формациями, перекрывая их. Они тоже играли важную экономическую роль, хотя сейчас в значительной мере выработаны.
Авторы заключают, что описанные осадочные Mn- и Fe-рудные отложения образовались, по-видимому, внутри сходных тектонических условий. Попытки графически изобразить раннепротерозойский суперконтинент крайне ограничены. В. Е. Хаин и Н. А. Божко предложили реконструкцию для раннего рифея (рис. 4) [Хаин, Божко, 1988]. В их книге говорится: "Реконструкция Пангеи 1 (имеется в виду раннепротерозойское время) представляет собой трудновыполнимую задачу" (с. 157), но авторы предполагают, что гипотетическая Пангея 1 напоминает более молодую Пангею. Последняя изображается в виде компактного блока, на котором рисуются контуры современных континентов, причем расположение их сравнительно мало отличается от палеореконструкции, предложенной Х. Дженкинсом [Jenkins, 1993] для триаса. Удивительно, что столь разновременные реконструкции представляются довольно сходными по расположению интересующих нас континентов. Мы также предприняли попытку воспроизвести возможное расположение континентальных блоков, несущих единовременные Fe- и Mn-рудные формации на раннепротерозойском суперконтиненте
Рис. 5. Предполагаемое расположение континентальных блоков на протерозойском суперконтиненте |
(рис. 5). Что касается Антарктиды, то на нашей схеме она использована для получения замкнутой картины как по форме, так и по существу, хотя из-за слабой изученности этого континента в геологическом отношении, прямых данных для этого пока недостаточно. Однако здесь отмечены корки пустынного загара на выходах коренных пород, аномально обогащенные Mn [Dorn et al., 1992]. Возможно это признак погребенного подо льдами месторождения, что вполне соответствует геохимическим свойствам Mn.
Сколько же времени просуществовал протерозойский суперконтинент? На основании палеомагнитных данных Д. А. Пайпер [Piper, 1982] высказал идею, что он существовал в течение всего протерозоя. Геологические данные, по мнению Д. Шисселя и Ф. Аро [Schissel and Aro, 1992], свидетельствуют о его существовании между 1800 и 1100 млн лет. В то же время модель Дж. Роджерса [Rogers, 1996] вообще показывает, что первый суперконтинент Родиния возник лишь 1000 млн лет назад, т.е. отрицает существование раннепротерозойского суперконтинента. Такие противоречия в области трактовки геологической истории Земли свидетельствуют о недостаточности научного фундамента для достоверных палеореконструкций, особенно для древнейших эпох развития Земли. В этом случае целесообразно шире использовать такие важные признаки, как существование хорошо датируемых и тектонически определенных крупнейших в мире рудных формаций.
Нам представляется, что процесс агрегации протерозойского суперконтинента мог сопровождаться неполным закрытием части океанского бассейна, находящегося между континентальными блоками, по внутренним окраинам которых и могло происходить формирование рудных формаций. В этом случае легче объяснить причины возникновения апвеллинга, трансгрессии океана и геологически относительно непродолжительного времени образования столь крупных месторождений (между 2,3-1,9 млрд лет). Заметим, что при палеореконструкциях не всегда рассматривается возможность сохранения в пределах суперконтинентов фрагментов внутренних бассейнов, возможно и с океанической корой. Но этого исключать нельзя, более того, такие области впоследствии могли стать местом раскола суперконтинента.
Однако есть и другая модель, предложенная Д. Л. Андерсоном [Anderson, 1984] и поддержанная М. Гурнисом [Gurnis, 1988]. По ней мощный суперконтинент с толстой корой должен вызвать сильный мантийный апвеллинг и приобретать куполообразную форму (выступ геоида). Следствием становится раскол суперконтинента и отдельные блоки начинают движение в сторону мантийного даунвеллинга (геоидного понижения). Можно предположить, что выступ геоида в пределах суперконтинента в Южном полушарии совпал с центром раннепротерозойского схождения континентов, который стал также центром последующего раскола. Вопрос о длительности существования раннепротерозойского суперконтинента, строго говоря, остается открытым.