Наиболее известным слабонелинейным эффектом является модуляционная неустойчивость поверхностных волн (неустойчивость Бенджамена-Фейра). Две близкие по частоте волны могут сближаться из-за того, что их скорости различны (эффект частотной дисперсии), однако эти скорости зависят еще и от амплитуд волн — чем выше амплитуда, тем выше скорость распространения нелинейной волны (амплитудная дисперсия). Игра частотной и амплитудной дисперсии приводит к тому, что процесс будет повторяться квазипериодически — длинная волна, догоняя короткую, теряет энергию, а значит, скорость, и начинает отставать. Такой процесс описывается нелинейным уравнением Шредингера (2), которое является универсальным и применяется во многих областях современной физики:
. (2)Один из сценариев поведения решений такого уравнения показан на рис. 7. Характер решений принципиальным образом определяется безразмерным параметром — крутизной волны:
ε = 2А/λ ,
где A — характерная амплитуда волны. Характерный масштаб модуляций (периодические осцилляции амплитуд волн) имеет порядок ε, т.е. каждые 1/ε периодов интенсивность волнения будет достигать некоторого максимума. Это явление периодического изменения амплитуды волн хорошо известно морякам и всем, кто видел картину И. Айвазовского «Девятый вал». Крутизна морских волн (исключая волны-убийцы) даже в самых суровых штормовых условиях редко превышает 0,1, и 9-е (10-е, 11-е и т.д.) валы очень хорошо чувствуются людьми, страдающими морской болезнью.
Эффекты сильной нелинейности морских волн изучены недостаточно хорошо. Физические модели, допускающие детальный математический анализ, в этом случае практически отсутствуют, и основными инструментами исследования являются эксперименты (лабораторный и морской) и численное моделирование.
Сценарий образования волн-убийц в этом случае может быть представлен следующим образом [15,16]. При относительно малой крутизне волн и первоначально однородном волновом поле происходит развитие модуляционной неустойчивости, которая может приводить к появлению устойчивых квазистационарных волновых пакетов. Сталкиваясь, такие пакеты могут образовывать пакеты большей амплитуды и, далее, уединенные волны — солитоны. По достижении некоторой критической амплитуды такие солитоны могут становиться неустойчивыми и обрушиваться. Сценарий, подобный описанному, неоднократно наблюдался. Волны-убийцы в некоторых случаях распространяются группами из небольшого числа очень крутых волн. В качестве иллюстрации упомянем случай, описанный капитаном Фредерик-Моро — командиром учебного крейсера ВМС Франции «Жанна д'Арк» [17].
5 февраля 1963 г. крейсер «Жанна д'Арк» находился в 430 милях к юго-востоку от Токио. Был западный ветер 15-20 м/с, волнение 7 баллов с запада высотой 7-8 м. Корабль находился в дрейфе, курс 2 румба относительно направления волнения; заданный курс 245-250°, причем рулевой с трудом удерживал судно на заданном курсе. Один из винтов был незадолго до этого поврежден; винт правого борта позволял поддерживать скорость хода 4 узла.
В 09.47 судового времени впереди по курсу была замечена группа больших обрушивающихся волн сразу за полосой относительно спокойной воды (высота волн 4-5 м). Капитан немедленно скомандовал «25 градусов влево» для того, чтобы встретить волны наиболее выгодным образом и уберечь единственный работающий винт. Судно успело повернуться на 15° и встретило первую волну по направлению 2 румба к борту; высота волны была около 15 м.
Эта волна бросила судно влево таким образом, что оно оказалось во впадине волны с дифферентом около 15° и сильным креном около 30° на правый борт. Судно повернулось еще на 20° влево. Капитан скомандовал «прямо руля» и затем «25 градусов вправо». В провале между первой и второй волнами судно почти встало на ровный киль, но было настигнуто второй волной, положившей судно на правый борт с креном около 35°. Во время выхода из крена левый (высокий) борт находился под водой. Вахтенные видели плавающими спасательные буи, закрепленные на второй палубе; один из буев был потерян. Третья волна имела несколько меньшую амплитуду и была пройдена относительно легко.
Инцидент с «Жанной д'Арк» известен как «Великолепная тройка». В описании этого случая эксперты отмечают следующие характерные черты:
1. Аномальная высота (15-20 м) волн и исключительно крутой (почти вертикальный) передний фронт.
2. Малое расстояние между последовательными гребнями (около 100 м).
3. Направление распространения группы отличалось на 20-30° от основного направления волн.
4. Высокая скорость распространения группы (около 10 м/с).
5. Компактность группы в поперечном направлении (ширина группы составляла 600-800 м); высоты резко спадали по краям.
Все отмеченные черты являются характерными для сильно нелинейных волн и хорошо согласуются с приведенным выше теоретическим сценарием, подтвержденным численным моделированием.
Рассмотренные примеры показывают как практическую важность проблемы предсказания появления волн-убийц, так и серьезные трудности решения этой проблемы. В 2000-2003 гг. были развернуты масштабные работы в рамках специального проекта MaxWave (http://w3g.gkss.de/projects/maxwave), поддержанного Европейской Комиссией и ESA. В проекте участвовало 11 групп из Германии, Великобритании, Норвегии, Бельгии, Португалии, Франции и Польши. Тематика волн-убийц продолжает горячо обсуждаться на специально организованных инженерно-научных совещаниях, последнее такое обсуждение с участием российских специалистов состоялось в рамках недели моских технологий Sea Tech Week в г. Брест (Франция) в октябре 2004 г. В течение последних пяти лет на ежегодных ассамблеях European Geosciences Union организуется секция «Волны-убийцы и наводнения».
В России проблемой гигантских волн — волн-убийц занимаются исследовательские группы в Институте океанологии им. П.П. Ширшова РАН, Институте теоретической физики им. Л.Д. Ландау РАН, Институте прикладной физики РАН и в НИИ Арктики и Антарктики. В недавно вышедшей книге сотрудников Института прикладной физики РАН [11] наиболее полно представлено современное состояние экспериментальных и теоретических исследований по проблеме волн-убийц. Следует признать, что российские исследования по этой проблеме в основном ведутся при более чем скромной финансовой поддержке Российского фонда фундаментальных исследований. Дальнейшее развитие этих исследований и практическая реализация результатов невозможна без внимания организаций ТЭК, реально заинтересованных в решении проблем безопасности морских сооружений и судов.
Списоклитературы
1. Haver S. Freak Waves: A suggested definition and possible consequences for marine structures / Rogue Waves-2004, Brest, France (http://www.ifremer.fr/web-com/stw2004/rw).
2. Lawton G. Monsters of the Deep // New Scientist, 2001, 170, N 2297.
3. Toffoli A., J.M. Leferve, J. Monbaliu, H. Savina, E. Bitner-Gregersen. Freak waves: Clues for prediction in ship accidents? / Proc. of the ISOPE-2003, Hawaii, USA, 2003.
4. ФащукД.Я., С.Н. Овсиенко, А.В. Леонов, А.П. Егоров, С.Н. Зацепа, А.А. Ивченко. Геоэкологические последствия аварийных разливов нефти // Известия АН. Сер. Геогр., 2003, № 5, с.57-73.
5. Liu P.C. and U.F. Pinho. Freak waves — more frequent than rare! // Annales Geophys., 2004, 22, p.1839-1842.
6. Han G.-Y. Ship design rules and regulations. An overview of major themes / Rogue Waves-2004, Brest, France (http://www.ifremer.fr/web-com/stw2004/rw).
7. Haver S. A possible freak wave event measured at the Draupner Jacket January 1 1995 / Rogue Waves-2004, Brest, France (http://www.ifremer.fr/web-com/stw2004/rw).
8. Haver S., and O.J. Andersen. Freak Waves. Rare realizations of a typical population or typical realizations of a rare population // Proc. of the ISOPE-2000, Seattle, USA, 2000.
9. NPD Regulations relating to design and outfitting of facilities etc. The petroleum activities (The Facilities Regulations). Norwegian Petroleum Directorate, Stavanger, September 2001.
10. Trulsen K. Simulating the spatial evolution of a measured time series of a freak wave / Rouge Waves-2000, IFREMER, 2001, p.265-273.
11. Куркин А.А., Е.Н. Пелиновский. Волны-убийцы: факты, теория и моделирование. НижнийНовгород, 2004.
12. Clauss G. Dramas of the sea: episodic waves and their impact on offshore structures // Appl. Ocean Res., 1999, 21, p.219-234.
13. Лавренов И.В. Встреча с «волной-убийцей» // Морской флот. 1985, № 12, с.28-30.
14. Lavrenov I.V. The wave energy concentration at the Agulhas current of South Africa // Natural Hazards, 1998, 17, p.117-127.
15. Henderson K.L., D.H. Peregrine, and J.W. Dold. Unsteady water wave modulations: fully nonlinear solutions and comparison with the nonlinear Sch_dinger equation // Wave Motion, 1998, 909, p.1-21.
16. Zakharov V. E., A.I. Dyachenko. Freak Waves as Nonlinear Stage of Stokes Wave Modulation Instability // Phys. Lett. A, 2005 (впечати).
17. Frederic-Moreau. The Glorious Three, translated by M. Olagnon and G.A. Chase / Rogue Waves-2004, Brest, France (http://www.ifremer.fr/web-com/stw2004/rw).