Смекни!
smekni.com

Изучение природных резервуаров в ачимовских отложениях Западной Сибири (стр. 2 из 2)

Сопоставление значений общих толщин пласта Ач2 и карты изохор, рассчитанной между горизонтами REP_Ach и Ach2, показало устойчивую линейную связь с коэффициентом корреляции R=0,965 на выборке по 50 точкам. Далее был проведен анализ связи эффективных толщин с общими. Было отбраковано несколько скважин, расположенных в заглинизированной юго-восточной части изучаемой площади с нулевой эффективной толщиной пласта, и две скважины в западной части съемки 3D, расположенные, очевидно, в зоне конусов выноса и имеющие аномально высокие эффективные толщины для этого участка. После этого зависимость стала явно линейной с коэффициентом корреляции R=0,9. Далее был добавлен ряд эксплуатационных скважин, находящихся в рамках границ 3D, чтобы убедиться в правильности наклона линейного тренда. На выборке из 67 скважин коэффициент корреляции R=0,9. В итоге прогнозная карта эффективных толщин пласта Ач2 (рис. 4а) получена из карты общих толщин по следующему уравнению: у=0,17336*x -1,1629.

Далее спрогнозированные эффективные толщины пласта Ач2 были уточнены на локальных участках на основе атрибутного анализа — амплитуд и акустической жесткости. На многих амплитудных палеосрезах и сечениях куба псевдоакустической жесткости, сейсмофациальной карте (рис. 5), рассчитанной в пакете Stratimagic, выделяются узкие каналы выноса терригенного материала. Распределение схемы псевдоакустического импеданса (рис. 4б) было сопоставлено с картой эффективных толщин, построенной по скважинным данным в районе эксплуатационного участка. На восточной границе разбуренной части вытянутые аномалии повышенной жесткости соответствуют увеличенным эффективным толщинам по скважинам. Достаточно гладкие изолинии карты эффективных толщин, пересчитанной из карты общих толщин, были откорректированы в этой области в соответствии с поведением предполагаемых каналов выноса.

В направлении на юг и юго-восток от эксплуатационных скважин было выявлено два участка, возможно, приуроченных к локальным зонам с увеличенными эффективными толщинами. Они отображены на вертикальном сечении амплитудного куба (рис. 1).

Первая зона связана с увеличением интервальных времен и появлением дополнительного максимума. Скважин, вскрывших эту зону, к сожалению, нет. Поэтому мы могли сделать лишь умозрительные заключения. Выделенная линза однозначно картируется на вертикальных сечениях, схеме распределения акустической жесткости (рис. 4б), схеме сейсмофаций и на карте временной мощности между отражающим горизонтом кровли интервала Ач2 и дополнительным отражающим горизонтом внутри интервала, ограничивающим линзу по ее подошве. Анализируя и сопоставляя всю информацию, можно предположить, что в этой зоне сформировалась ловушка типа «уступов склона». Такие линзы песчаника образуются за счет сбрасывания псаммитового материала с кромки шельфа [2]. При отсутствии скважинных данных говорить о количественных значениях эффективных толщин трудно, поэтому на прогнозной карте эта зона была обозначена лишь как участок предполагаемого увеличения эффективных толщин.

Вторая перспективная зона расположена между двумя разведочными скважинами на юге площади. Эффективные толщины в этих скважинах достаточно велики и достигают 18-19 м, поэтому эта зона вызвала определенный интерес. Участок аномального поведения амплитуд был прослежен, прокоррелирован дополнительный условный горизонт Ach2_2 и рассчитана схема распределения максимальных положительных амплитуд. На этом участке были сопоставлены значения амплитуд и эффективных толщин по 10 близлежащим разведочным скважинам. Коэффициент корреляции линейной регрессии R=0,913. По следующему уравнению y=0,029971*x-19,898 была получена карта эффективных толщин для южного участка (рис. 4в). Максимальные расчетные значения эффективной толщины составили 40-50 м. Но, с нашей точки зрения, выборка из 10 точек малодостоверна. Поэтому на финальной прогнозной карте в южной части были отрисованы области с максимальными толщинами 25-28 м (рис. 5а).

Таким образом, карта эффективных толщин для интервала Ач2, полученная по классической схеме через интервальные времена и общие толщины, была уточнена и отредактирована на локальных участках.

Прогнозная карта коэффициента песчанистости получена как результат деления карты эффективных толщин на карту общих толщин. Проверка по скважинам показала очень хорошую точность построения. Коэффициент корреляции карты со значениями песчанистости в скважинах равен 0,984, стандартное отклонение равно 0,14.

Итак, наиболее перспективные участки для разработки пласта Ач2 расположены в северной и северо-восточной частях площади, где эффективные толщины достигают 30-45 м, а нефтенасыщенность резервуара доказана разведочным бурением.

В пределах изучаемой территории интервал разреза, индексируемый как Ач3, выделяется в нижней части ачимовской продуктивной толщи и является наиболее мощным. Он выклинивается к западным границам съемки 3D, и граница выклинивания легко опознается как по распределению сейсмофаций, так и по поведению амплитуд (рис. 6).

Если исходить из положения о том, что на изучаемой территории имеет распространение фондоформная часть клиноформы пласта Ач3, то в первую очередь песчаные ловушки будут связаны с аккумулятивными процессами. Такие ловушки приурочены к турбидитным песчаникам, сформировавшимся в двух наиболее типичных случаях:

перед упорами (конседиментационными локальными и региональными структурами);

во впадинах [2].

Отсюда следует, что на наиболее приподнятых участках палеорельефа песчаные разности откладываться не будут, что подтверждается и фактически. Так, одна из скважин, расположенная в центре крупного палеоподнятия на юго-востоке площади, является единственной из окружающих ее скважин, полностью заглинизированной. В центре разбуренного участка, как показывает совмещение карты эффективных толщин и карты изохор между горизонтами А и Rep_Ach, на палеоподнятиях фиксируются эффективные толщины от 0 до 5м, а в палеовпадинах накапливались песчаники мощностью до 15-20 м.

Для более качественного моделирования залежей нижней ачимовской пачки потребовалось ее расчленение на мелкие интервалы разреза. Достоверно сделать корреляцию по скважинам стало возможным, только используя данные 3D. По вертикальным и по горизонтальным сечениям сейсмического куба, по распределению сейсмофаций четко выделяются границы выклинивания и резкого уменьшения толщин отдельных пропластков, что позволило провести корреляцию дополнительных пяти горизонтов в пределах интервала Ач3 (рис. 1), в соответствии с которыми было выделено 5 пропластков в разрезах скважин.

Карта эффективных толщин интервала Ач3 получена так же, как и для Ач2, т.е. через интервальные времена и общие толщины. Путем деления карты эффективных толщин на карту общих толщин интервала Ач3 получена прогнозная карта песчанистости. Проверка по скважинам показала высокую точность построения. Коэффициент корреляции карты со значениями песчанистости в скважинах равен 0,977, стандартное отклонение при этом равно 0,06.

Заключение

Таким образом, в итоге проведенных работ по интегрированной интерпретации данных 3Д (более чем на 900 км2) и данных ГИС для ачимовской толщи получены следующие основные результаты:

В пределах района работ песчано-алевритовые пласты интервала Ач1 представлены во всех трех частях клиноформы: ундаформенной, склоновой и фондоформенной; интервал Ач2 представлен склоновой частью и подножием склона, а наиболее мощный на данной территории интервал Ач3 выделяется только в фондоформенной части соответствующего клиноциклита.

Спрогнозированы карты эффективных толщин для всех пачек ачимовской толщи, а также карты общих толщин и песчанистости.

Полученные результаты позволили наметить наиболее перспективные участки для размещения эксплуатационных скважин, а также заложить 7 разведочных скважин на ачимовскую толщу. При этом одна скважина предполагает вскрыть около 30 м эффективных нефтенасыщенных толщин в интервале Ач2 и около 10 м в интервале Ач3.

Список литературы

1. Левянт В.Б. и др. Граничные условия, способы оптимизации и подтверждаемость атрибутного прогнозирования параметров продуктивных пластов по данным 3Д и ГИС. // «Геофизика» специальный выпуск «Технологии сейсморазведки -1», 2002.

2. Жарков А.М. Неантиклинальные ловушки углеводородов в нижнемеловой клиноформной толще Западной Сибири. //«Геология нефти и газа», №1, 2001.