49. Гидравлический удар, явление резкого изменения давления в жидкости, вызванное мгновенным изменением скорости её течения в напорном трубопроводе. В результате жидкость останавливается, а её кинетическая энергия превращаются в потенциальную — потенциальную энергию упругого сжатия жидкости (ведь жидкости считаются несжимаемыми лишь по сравнению с газами, а на самом деле сжимаются примерно в той же степени, что и твёрдые тела с кристаллической структурой), а также потенциальную энергию упругого (а если не повезёт — то и пластического, то есть необратимого) растяжения стенок трубы. Всё это приводит к тому, что давление в месте остановки стремительно возрастает, тем больше, чем выше была скорость жидкости и чем меньше её сжимаемость Может возникать вследствие резкого закрытия или открытии задвижки. В первом случае удар называют положительным, во втором - отрицательным. Опасен положительный гидроудар. Также гидроудары чрезвычайно опасны и для другого оборудования, такого как теплообменники, насосы и сосуды, работающие под давлением. Увеличение давления при Г.у. определяется Dp = r(v0 — v1) c, где Dp — увеличение давления в н/м2, r — плотность жидкости в кг/м3, v0 и v1 — средние скорости в трубопроводе до и после закрытия задвижки в м/сек, с — скорость распространения ударной волны вдоль трубопровода. При абсолютно жёстких стенках с равна скорости звука в жидкости а (в воде а = 1400 м/сек). скорость распространения ударной волны c находится в прямо пропорциональной зависимости от сжимаемости жидкости, величины деформации стенок трубопровода, определяемой модулем упругости материала E, из которого он выполнен, а также от диаметра трубопровода. Следовательно, гидравлический удар не может возникнуть в трубопроводе, содержащем газ, так как газ легко сжимаем.Зависимость между скоростью ударной волны c, её длиной и временем распространения (L и τ соответственно) выражается следующей формулой:
Г. у. — сложный процесс образования упругих деформаций жидкости и их распространения по длине трубы. При очень большом увеличении давления Г. у. может вызывать аварии. Для их предупреждения на трубопроводе устанавливают предохранительные устройства (уравнительные резервуары, воздушные колпаки, вентили и др.). Способы предотвращения возникновения гидравлических ударов 1. для ослабления силы этого явления или его полного предотвращения можно уменьшить скорость движения жидкости в трубопроводе, увеличив его диаметр. 2. увеличивать время закрытия затвора 3.Установка демпфирующих устройств Для предотвращения гидроударов, вызванных резкой переменой направления потока рабочей среды, на трубопроводах устанавливаются обратные клапаны.
50. Нормальная эксплуатация гидропривода возможна при использовании таких рабочих жидкостей ,которые одновременно могут выполнять различные функции. В первую очередь рабочая жидкость в гидроприводе является рабочим телом, т.е. является носителем энергии, обеспечивающим передачу последней от источника энергии (двигателя) к её потребителю (исполнительным механизмам). Кроме того, рабочая жидкость выполняет роль смазки в парах трения гидропривода, являясь смазывающим и охлаждающим агентом, и средой, удаляющей продукты изнашивания. К функциям рабочей жидкости относится и защита деталей гидропривода от коррозии. В связи с этим к рабочим жидкостям предъявляются разносторонние требования, в некоторой степени противоречивые и выполнение которых в полной мере не всегда возможно. К ним относятся: - хорошие смазочные свойства; - малое изменение вязкости при изменении температуры и давления; - малая склонность к вспениванию; - антикоррозийные свойства; способность предохранять детали гидропривода от коррозии; - малый коэффициент теплового расширения и т.д. Невыполнение этих условий приводит к различным нарушениям в функционировании гидропривода. В частности плохие смазочные или антикоррозийные свойства приводят к уменьшению сроков службы гидропривода; неоптимальная вязкость или её слишком большая зависимость от режимов работы гидропривода снижают общий к.п.д. и т.д. Нормальная и долговременная работа гидропривода определяется в равной мере как правильностью выбора марки рабочей жидкости при конструировании, так и грамотной эксплуатацией гидропривода. 1.Рабочие жидкости на нефтяной основе наиболее часто используются в гидроприводах. Однако базовые масла за редким исключением (веретенное АУ, турбинное и некоторые другие масла) не применяются, т.к. не обладают требуемыми для гидропривода свойствами. Для получения рабочих жидкостей с нужными эксплуатационными свойствами базовые масла подвергаются доработке с помощью различных присадок. 2. Для гидроприводов, работающих в условиях, отличающихся от нормальных (tраб >1000C, повышенные требования к пожаробезопасности, чрезмерно низкие температуры окружающей среды и т.п.), или от которых требуется повышенная стабильность характеристик, применяются синтетические рабочие жидкости.
51. Сопротивление, вызываемое трением, зависит от диаметра и длины трубопровода и скорости воды (если скорость увеличивается в 2 раза, то сопротивление - в 4 раза). Чем меньше диаметр и больше длина трубопровода и чем выше скорость воды, тем больше сопротивление создается на пути воды и наоборот. При большой длине труб сопротивление возрастает, с увеличением диаметра труб оно падает. Длина, диаметр и материал трубопровода, а также количество фитингов (уголков, тройников, клапанов) – необходимы для расчета потерь на гидравлические сопротивления в трубопроводе. Рост потерь находится в прямой зависимости от длины трубопровода и в квадратичной зависимости от расхода (при увеличении расхода вдвое, потери напора на гидравлические сопротивления возрастают вчетверо). Величину потерь для трубопроводов и фитингов различных диаметров и находят по таблицам.
Установить, в каком режиме будет работать насос, можно лишь при условии, если известна характеристика системы, в которую этот насос подает жидкость. В простейшем случае система—это напорный трубопровод, соединяющий насос с баком'. Как известно, напор, развиваемый насосом, складывается из геометрической высоты подъема жидкости и суммы гидравлических сопротивлений: H=Hг+∑hп, где ∑hп— сумма потерь напора. Она зависит от диаметра и длины трубопровода, шероховатости его стенок, числа местных сопротивлений и расхода Q подаваемой жидкости, т. е. ∑hп=SQ2=(Aι+Am∑ζ)Q2 где S — полное сопротивление системы; А — удельное сопротивление по длине труб; Am— удельное местное сопротивление; ι— длина трубопровода; ∑ζ— сумма коэффициентов местных сопротивлений
52/17. Гидротрансформатор. Принцип действия ГТ такой же, как и Гмуфты. Те же самые относительное и переносное движения масла. (При вращении насосного колеса масло под воздействием центробежной силы начинает двигаться по направляющим лопаткам к периферии, приобретая при этом кинетическую энергию. Из насосного колеса оно попадает в турбинное колесо, где при соприкосновении с лопатками турбины отдает ему часть своей энергии, приводя его, тем самым, во вращение.) Но для увеличения крутящего момента на выходном валу трансформатора введен дополнительный элемент – реакторное колесо (реактор, иногда статор). Реактор устанавливается между выходом из турбины и входом в насосное колесо, и предназначен для направления потока масла, выходящего из турбинного колеса, таким образом, чтобы его скорость совпадала с направлением вращения насосного колеса. В этом случае неизрасходованная в турбинном колесе энергия масла используется для дополнительного увеличения частоты вращения насосного колеса, что соответствующем образом увеличивает кинетическую энергию масла. Следствием этого является увеличение крутящего момента на валу турбинного колеса, по сравнению с моментом, подводимым к насосному колесу от двигателя. Следует отметить, что соотношение моментов на насосном и турбинном колесах определяется отношением угловых скоростей этих элементов. Максимальное увеличение крутящего момента происходит при полностью остановленной турбине. Такой режим работы трансформатора называется стоповым. Под термином “коэффициент трансформации” понимается отношение момента, развиваемого турбинным колесом, к моменту на насосном колесе. Затем, в процессе увеличения частоты вращения турбинного колеса, происходит снижение эффективности работы реактора, и крутящий момент на валу турбинного колеса уменьшается. Это вполне объяснимо, поскольку, чем выше частота вращения турбинного колеса, тем меньше влияние переносной скорости потока масла на лопатки этого колеса. В момент, когда частота вращения турбины составит приблизительно 85% частоты вращения насосного колеса, реакторное колесо, благодаря муфте свободного хода, теряет связь с картером трансмиссии и начинает свободно вращается вместе с потоком, не воздействуя на него. В результате этого трансформатор переходит в режим работы гидромуфты. ГТ обладает несколькими благоприятными свойствами. Его установка приводит к плавному изменению крутящего момента, нагружающего трансмиссию, что увеличивает долговечность агрегатов трансмиссии и снижает затраты на ее ремонт. Плавное изменение крутящего момента самым благоприятным образом сказывается при движении по слабонесущим грунтам и скользкой дороге (лед, снег), поскольку в этом случае снижается вероятность срыва грунта и буксования ведущих колес. ГТ является превосходным демпфером крутильных колебаний двигателя, которые гасятся маслом и не пропускаются в механическую часть трансмиссии.